This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320797 #7 Nov 05 2018 21:01:08 %S A320797 1,0,1,1,3,4,9,15,33,60,121 %N A320797 Number of non-isomorphic self-dual multiset partitions of weight n with no singletons. %C A320797 Also the number of nonnegative integer square symmetric matrices with sum of elements equal to n and no rows or columns summing to 0 or 1, up to row and column permutations. %e A320797 Non-isomorphic representatives of the a(2) = 1 through a(7) = 15 multiset partitions: %e A320797 {{11}} {{111}} {{1111}} {{11111}} {{111111}} {{1111111}} %e A320797 {{11}{22}} {{11}{122}} {{111}{222}} {{111}{1222}} %e A320797 {{12}{12}} {{11}{222}} {{112}{122}} {{111}{2222}} %e A320797 {{12}{122}} {{11}{2222}} {{112}{1222}} %e A320797 {{12}{1222}} {{11}{22222}} %e A320797 {{22}{1122}} {{12}{12222}} %e A320797 {{11}{22}{33}} {{122}{1122}} %e A320797 {{11}{23}{23}} {{22}{11222}} %e A320797 {{12}{13}{23}} {{11}{12}{233}} %e A320797 {{11}{22}{233}} %e A320797 {{11}{22}{333}} %e A320797 {{11}{23}{233}} %e A320797 {{12}{12}{333}} %e A320797 {{12}{13}{233}} %e A320797 {{13}{23}{123}} %e A320797 Inequivalent representatives of the a(6) = 9 symmetric matrices with no rows or columns summing to 1: %e A320797 [6] %e A320797 . %e A320797 [3 0] [2 1] [4 0] [3 1] [2 2] %e A320797 [0 3] [1 2] [0 2] [1 1] [2 0] %e A320797 . %e A320797 [2 0 0] [2 0 0] [1 1 0] %e A320797 [0 2 0] [0 1 1] [1 0 1] %e A320797 [0 0 2] [0 1 1] [0 1 1] %Y A320797 Cf. A000219, A007716, A302545, A316980, A316983, A319560, A319616, A319721. %Y A320797 Cf. A320796, A320798, A320799, A320804, A320811, A320812, A320813. %K A320797 nonn,more %O A320797 0,5 %A A320797 _Gus Wiseman_, Nov 02 2018