This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320802 #16 Aug 04 2025 08:00:23 %S A320802 1,1,2,8,26,89,274,908,2955,9926,34021,119367,428612,1574222,5914324, %T A320802 22699632,88997058,356058538,1453059643,6044132792,25612530061, %U A320802 110503625785,485161109305,2166488899640,9835209048655,45370059225137,212582814591083,1011306624492831 %N A320802 Number of non-isomorphic aperiodic multiset partitions of weight n whose dual is also an aperiodic multiset partition. %C A320802 Also the number of nonnegative integer matrices with sum of entries equal to n and no zero rows or columns where the multiset of rows and the multiset of columns are both aperiodic, up to row and column permutations. %C A320802 A multiset is aperiodic if its multiplicities are relatively prime. %C A320802 The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. %C A320802 The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices. %C A320802 Also the number of non-isomorphic aperiodic multiset partitions of weight n whose parts have relatively prime periods, where the period of a multiset is the GCD of its multiplicities. %H A320802 Jinyuan Wang, <a href="/A320802/b320802.txt">Table of n, a(n) for n = 0..50</a> %F A320802 Second Moebius transform of A007716, or Moebius transform of A303546, where the Moebius transform of a sequence b is a(n) = Sum_{d|n} mu(d) * b(n/d). %e A320802 Non-isomorphic representatives of the a(1) = 1 through a(4) = 26 multiset partitions: %e A320802 {{1}} {{1,1}} {{1,1,1}} {{1,1,1,1}} %e A320802 {{1},{2}} {{1,2,2}} {{1,2,2,2}} %e A320802 {{1},{1,1}} {{1,2,3,3}} %e A320802 {{1},{2,2}} {{1},{1,1,1}} %e A320802 {{1},{2,3}} {{1},{1,2,2}} %e A320802 {{2},{1,2}} {{1,1},{2,2}} %e A320802 {{1},{2},{2}} {{1},{2,2,2}} %e A320802 {{1},{2},{3}} {{1,2},{2,2}} %e A320802 {{1},{2,3,3}} %e A320802 {{1,2},{3,3}} %e A320802 {{1},{2,3,4}} %e A320802 {{1,3},{2,3}} %e A320802 {{2},{1,2,2}} %e A320802 {{3},{1,2,3}} %e A320802 {{1},{1},{1,1}} %e A320802 {{1},{1},{2,2}} %e A320802 {{1},{1},{2,3}} %e A320802 {{1},{2},{1,2}} %e A320802 {{1},{2},{2,2}} %e A320802 {{1},{2},{3,3}} %e A320802 {{1},{2},{3,4}} %e A320802 {{1},{3},{2,3}} %e A320802 {{2},{2},{1,2}} %e A320802 {{1},{2},{2},{2}} %e A320802 {{1},{2},{3},{3}} %e A320802 {{1},{2},{3},{4}} %Y A320802 Cf. A000740, A000837, A007716, A007916, A100953, A301700, A303386, A303431, A303546, A303547, A316983, A320800-A320810. %K A320802 nonn %O A320802 0,3 %A A320802 _Gus Wiseman_, Nov 06 2018 %E A320802 a(26)-a(27) from _Jinyuan Wang_, Jun 27 2020