This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320846 #19 Nov 14 2018 14:01:10 %S A320846 1,1,1,1,3,3,3,3,6,10,10,10,14,22,22,22,35,47,57,57,79,95,115,115,146, %T A320846 217,247,267,307,433,473,513,598,779,985,1045,1253,1489,1861,1941, %U A320846 2272,2859,3397,3847,4301,5467,6171,6991,7688,9531,11559,12749,14693 %N A320846 Expansion of Product_{k>=1} 1/(1 - x^(k^2))^A037444(k). %C A320846 a(n) is the number of partitions of n into squares k^2 of A037444(k) kinds. %H A320846 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A320846 G.f.: Product_{k>=1} 1/(1 - x^A000290(k))^A001156(A000290(k)). %e A320846 a(8) = 6 because we have [{4}, {4}], [{4}, {1, 1, 1, 1}], [{4}, {1}, {1}, {1}, {1}], [{1, 1, 1, 1}, {1, 1, 1, 1}], [{1, 1, 1, 1}, {1}, {1}, {1}, {1}] and [{1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}]. %t A320846 b[n_] := b[n] = SeriesCoefficient[Product[1/(1 - x^k^2), {k, 1, n}], {x, 0, n^2}]; a[n_] := a[n] = SeriesCoefficient[Product[1/(1 - x^k^2)^b[k], {k, 1, n}], {x, 0, n}]; Table[a[n], {n, 0, 52}] %Y A320846 Cf. A000290, A001156, A001970, A037444, A045842, A285047, A300300. %K A320846 nonn %O A320846 0,5 %A A320846 _Ilya Gutkovskiy_, Nov 11 2018