A320858 a(n) = A320857(prime(n)).
0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 1, 0, 1, 2, 1, 2, 1, 2, 1, 0, -1, 0, 1, 2, 1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 5, 4, 5, 4, 5, 4, 3, 2, 3, 4, 5, 6, 5, 4, 5, 4, 5, 4, 5, 4, 3, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 5, 4, 5, 6, 5, 6, 5, 4
Offset: 1
Keywords
Examples
prime(46) = 199, Pi(8,1)(199) = 8, Pi(8,5)(199) = 13, Pi(8,3)(199) = Pi(8,7)(199) = 12, so a(46) = 13 + 12 - 8 - 12 = 5.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Wikipedia, Chebyshev's bias.
Crossrefs
Programs
-
Mathematica
a[n_] := -Sum[KroneckerSymbol[-2, Prime[i]], {i, 1, n}]; Array[a, 100] (* Jean-François Alcover, Dec 28 2018, from PARI *)
-
PARI
a(n) = -sum(i=1, n, kronecker(-2, prime(i)))
Formula
a(n) = -Sum_{i=1..n} Kronecker(prime(i),2) = -Sum_{primes p<=n} Kronecker(2,prime(i)) = -Sum_{i=1..n} A091337(prime(i)).
Comments