A320875 Least d > 0 such that both Q = M + 2d and R = M + (M^2-1)/(Q-M) are prime, where M = 2^n - 1 = A000225(n), or 0 if there is no such d.
0, 1, 2, 1, 3, 8, 2, 0, 6, 4, 66, 16, 20, 0, 6, 1, 2720, 0, 32, 0, 164, 8, 0, 524288, 153, 3573184, 2097152, 7354396, 19436, 4517888, 672, 0, 174080, 0, 262146, 1984, 48, 0, 4194296, 79, 30720, 128, 1825866, 4188889, 194396, 27227248, 0, 16384, 723, 0, 265227072, 22771712, 13982720, 134217728, 59885796, 587144, 19436, 0, 17179869152, 8388608
Offset: 1
Keywords
Examples
a(109) = 8436 yields a 62-digit prime R and a 127 digit PWN 2^108*Q*R. a(381) = 5456 yields a 226-digit prime R and a 455 digit PWN 2^380*Q*R. (This and the preceding one are mentioned in the News articles, cf LINKS.) a(391) = 16386 leads to a 231-digit prime R and a 466-digit PWN 2^390*Q*R. a(409) = 12360 leads to a 242-digit prime R and a 488-digit PWN 2^408*Q*R. a(421) = 1661 leads to a 250-digit prime R and a 504-digit PWN 2^420*Q*R. a(430) = 10304 leads to a 255-digit prime R and a 514-digit PWN 2^429*Q*R. a(441) = 36080 leads to a 261-digit prime R and a 526-digit PWN 2^440*Q*R. a(505) = 20726 leads to a 300-digit prime R and a 604-digit PWN 2^504*Q*R.
Links
- Daily Record, CWU students find longest 'weird' number, and also Yakima Herald, CWU math students calculate what no mathematician has before (backup on web.archive.org, page no longer available), both from Dec. 5, 2013
- S. Kravitz, A search for large weird numbers. J. Recreational Math. 9(1976), 82-85 (1977). Zbl 0365.10003
Crossrefs
Programs
-
PARI
a(n)={my(M=2^n-1,S=M^2-1); fordiv(S+!S,D, ispseudoprime(M+D)&& ispseudoprime(M+S/D)&& return(D/2))} \\ Much faster than the variant below, but requires increasingly more stack space (allocatemem()) for larger n.
-
PARI
A320875(n,L=0)={my(M=2^n-1,S=M^2-1); forprime(Q=M+1,if(L,L,M<
Comments