A320882 Primes p such that repeated application of A062028 (add sum of digits) yields two other primes in a row: p, A062028(p) and A062028(A062028(p)) are all prime.
11, 59, 101, 149, 167, 257, 277, 293, 367, 419, 479, 547, 617, 727, 839, 1409, 1559, 1579, 1847, 2039, 2129, 2617, 2657, 2837, 3449, 3517, 3539, 3607, 3719, 4217, 4637, 4877, 5689, 5779, 5807, 5861, 6037, 6257, 6761, 7027, 7489, 7517, 8039, 8741, 8969, 9371, 9377, 10667, 10847, 10937, 11257, 11279, 11299, 11657
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
f:= n -> n + convert(convert(n,base,10),`+`): filter:= proc(n) local x; if not isprime(n) then return false fi; x:= f(n); isprime(x) and isprime(f(x)) end proc: select(filter, [seq(i,i=3..10000,2)]); # Robert Israel, Dec 17 2020
-
PARI
is_A320882(n,p=n)=isprime(p=A062028(p))&&isprime(A062028(p))&&isprime(n) \\ Putting isprime(n) to the end is more efficient for the frequent case when the terms are already known to be prime. forprime(p=1,14999,isprime(q=A062028(p))&&isprime(A062028(q))&&print1(p","))
Comments