A320888 Number of set multipartitions (multisets of sets) of factorizations of n into factors > 1 such that all the parts have the same product.
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 5, 2, 2, 3, 3, 1, 5, 1, 4, 2, 2, 2, 8, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 7, 2, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 9, 1, 2, 3, 9, 2, 5, 1, 3, 2, 5, 1, 9, 1, 2, 3, 3, 2, 5, 1, 7, 4, 2, 1, 9, 2, 2, 2
Offset: 1
Keywords
Examples
The a(144) = 20 set multipartitions: (2*3*4*6) (2*8*9) (2*72) (144) (2*6)*(2*6) (3*6*8) (3*48) (2*6)*(3*4) (2*3*24) (4*36) (3*4)*(3*4) (2*4*18) (6*24) (2*6*12) (8*18) (3*4*12) (9*16) (12)*(2*6) (12)*(12) (12)*(3*4)
Crossrefs
Programs
-
Mathematica
strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]]; Table[With[{g=GCD@@FactorInteger[n][[All,2]]},Sum[Binomial[Length[strfacs[n^(1/d)]]+d-1,d],{d,Divisors[g]}]],{n,100}]