cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320892 Numbers with an even number of prime factors (counted with multiplicity) that cannot be factored into distinct semiprimes.

This page as a plain text file.
%I A320892 #14 Dec 08 2018 21:03:31
%S A320892 16,64,81,96,144,160,224,256,324,352,384,400,416,486,544,576,608,625,
%T A320892 640,729,736,784,864,896,928,960,992,1024,1184,1215,1296,1312,1344,
%U A320892 1376,1408,1440,1504,1536,1600,1664,1696,1701,1888,1936,1944,1952,2016,2025
%N A320892 Numbers with an even number of prime factors (counted with multiplicity) that cannot be factored into distinct semiprimes.
%C A320892 A semiprime (A001358) is a product of any two not necessarily distinct primes.
%C A320892 If A025487(k) is in the sequence then so is every number with the same prime signature. - _David A. Corneth_, Oct 23 2018
%C A320892 Numbers for which A001222(n) is even and A322353(n) is zero. - _Antti Karttunen_, Dec 06 2018
%H A320892 Antti Karttunen, <a href="/A320892/b320892.txt">Table of n, a(n) for n = 1..10000</a>
%e A320892 A complete list of all factorizations of 1296 into semiprimes is:
%e A320892   1296 = (4*4*9*9)
%e A320892   1296 = (4*6*6*9)
%e A320892   1296 = (6*6*6*6)
%e A320892 None of these is strict, so 1296 belongs to the sequence.
%t A320892 strsemfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strsemfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]];
%t A320892 Select[Range[1000],And[EvenQ[PrimeOmega[#]],strsemfacs[#]=={}]&]
%o A320892 (PARI)
%o A320892 A322353(n, m=n, facs=List([])) = if(1==n, my(u=apply(bigomega,Vec(facs))); (0==length(u)||(2==vecmin(u)&&2==vecmax(u))), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A322353(n/d, d-1, newfacs))); (s));
%o A320892 isA300892(n) = if(bigomega(n)%2,0,(0==A322353(n))); \\ _Antti Karttunen_, Dec 06 2018
%Y A320892 Cf. A001055, A001358, A005117, A006881, A007717, A025487, A028260, A045778, A318871, A318953, A320462, A320655, A320656, A320891, A320893, A320894, A322353.
%K A320892 nonn
%O A320892 1,1
%A A320892 _Gus Wiseman_, Oct 23 2018