This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320906 #24 Jan 01 2024 15:30:59 %S A320906 0,0,1,0,1,6,0,1,8,24,0,1,10,39,80,0,1,12,58,150,240,0,1,14,81,256, %T A320906 501,672,0,1,16,108,406,955,1524,1792,0,1,18,139,608,1686,3178,4339, %U A320906 4608,0,1,20,174,870,2794,6144,9740,11762,11520 %N A320906 T(n, k) = binomial(2*n - k, k - 1)*hypergeom([2, 2, 1 - k], [1, 2*(1 - k + n)], -1), triangle read by rows, T(n,k) for n >= 0 and 0 <= k <= n. %H A320906 Andrew Howroyd, <a href="/A320906/b320906.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50) %F A320906 T(n, k) = Sum_{j=0..2*n+1-k} binomial(2*n+1-k, 2*n+2-2*k+j) * binomial(j+2,2). - _Detlef Meya_, Dec 31 2023 %e A320906 Triangle starts: %e A320906 [0] 0 %e A320906 [1] 0, 1 %e A320906 [2] 0, 1, 6 %e A320906 [3] 0, 1, 8, 24 %e A320906 [4] 0, 1, 10, 39, 80 %e A320906 [5] 0, 1, 12, 58, 150, 240 %e A320906 [6] 0, 1, 14, 81, 256, 501, 672 %e A320906 [7] 0, 1, 16, 108, 406, 955, 1524, 1792 %e A320906 [8] 0, 1, 18, 139, 608, 1686, 3178, 4339, 4608 %e A320906 [9] 0, 1, 20, 174, 870, 2794, 6144, 9740, 11762, 11520 %p A320906 T := (n, k) -> binomial(2*n-k, k-1)*hypergeom([2, 2, 1-k], [1, 2*(1-k+n)], -1): %p A320906 seq(seq(simplify(T(n, k)), k=0..n), n=0..9); %t A320906 T[n_, k_] := Sum[Binomial[2*n+1-k, 2*n+2-2*k+j]*Binomial[j+2, 2], {j,0, 2*n+1-k}]; Flatten[Table[T[n, k], {n, 0, 15}, {k, 0, n}]] (* _Detlef Meya_, Dec 31 2023 *) %o A320906 (PARI) T(n, k) = {sum(j=0, 2*n+1-k, binomial(2*n+1-k, 2*n+2-2*k+j) * binomial(j+2,2))} \\ _Andrew Howroyd_, Dec 31 2023 %o A320906 (Python) %o A320906 from functools import cache %o A320906 @cache %o A320906 def T(n, k): %o A320906 if k <= 0 or n <= 0: return 0 %o A320906 if k == 1: return 1 %o A320906 if k == n: return n * (n + 1) * 2**(n - 2) %o A320906 return T(n-1, k) + 2*T(n-1, k-1) - T(n-2, k-2) %o A320906 for n in range(10): print([T(n, k) for k in range(n + 1)]) %o A320906 # after _Detlef Meya_, _Peter Luschny_, Jan 01 2024 %Y A320906 Row sums are A320907. T(n, n) = A001788(n). %Y A320906 Cf. A320905. %K A320906 nonn,tabl %O A320906 0,6 %A A320906 _Peter Luschny_, Oct 28 2018