This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320909 #23 Jul 17 2021 11:23:00 %S A320909 89,271,325,328,890,1025,1055,1081,1129,1169,1241,2657,2710,3112,3121, %T A320909 3149,3244,3250,3263,3280,3335,3346,3403,4193,4222,4231,4289,4291, %U A320909 5531,5584,5653,5678,5716,5791,5795,5836,5837,8882,8900,8926,8942,9664,9794,9875 %N A320909 Numbers k such that k^2 and k^3, when reversed, are prime. %H A320909 Chai Wah Wu, <a href="/A320909/b320909.txt">Table of n, a(n) for n = 1..10000</a> (first 100 terms from Jesse Endo Jenks) %H A320909 Codewars, <a href="https://www.codewars.com/kata/square-and-cube-of-a-number-become-prime-when-reversed">Square and Cube of a Number Become Prime When Reversed</a> %e A320909 89 is a term since 89^2 = 7921 and 1297 is prime, and 89^3 = 704969 and 969407 is prime. %t A320909 Select[Range[10^4], AllTrue[IntegerReverse@ {#^2, #^3}, PrimeQ] &] (* _Michael De Vlieger_, Oct 23 2018 *) %o A320909 (PARI) isok(n) = isprime(fromdigits(Vecrev(digits(n^2)))) && isprime(fromdigits(Vecrev(digits(n^3)))); \\ _Michel Marcus_, Oct 23 2018 %o A320909 (Python) %o A320909 from sympy import isprime %o A320909 A320909_list = [n for n in range(1,10**6) if isprime(int(str(n**2)[::-1])) and isprime(int(str(n**3)[::-1]))] # _Chai Wah Wu_, Jan 24 2019 %Y A320909 Intersection of A059007 and A059008. %K A320909 nonn,base %O A320909 1,1 %A A320909 _Jesse Endo Jenks_, Oct 23 2018