This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320913 #6 Dec 08 2018 21:03:52 %S A320913 4,9,24,25,40,49,54,56,88,104,121,135,136,152,169,184,189,232,240,248, %T A320913 250,289,296,297,328,336,344,351,361,375,376,424,459,472,488,513,528, %U A320913 529,536,560,568,584,621,624,632,664,686,712,776,783,808,810,816,824 %N A320913 Numbers with an even number of prime factors (counted with multiplicity) that cannot be factored into squarefree semiprimes (A320891) but can be factored into distinct semiprimes (A320912). %C A320913 A semiprime (A001358) is a product of any two not necessarily distinct primes. %C A320913 If A025487(k) is contained in this sequence then so is every positive integer with its prime signature. - _David A. Corneth_, Oct 24 2018 %t A320913 sqfsemfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfsemfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]]; %t A320913 strsemfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strsemfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]]; %t A320913 Select[Range[1000],And[EvenQ[PrimeOmega[#]],strsemfacs[#]!={},sqfsemfacs[#]=={}]&] %Y A320913 Cf. A001055, A001222, A001358, A005117, A006881, A007717, A025487, A028260, A320655, A320656, A320891, A320892, A320893, A320894, A320911, A320912. %K A320913 nonn %O A320913 1,1 %A A320913 _Gus Wiseman_, Oct 23 2018