A320915 One of the three successive approximations up to 13^n for 13-adic integer 5^(1/3). This is the 8 (mod 13) case (except for n = 0).
0, 8, 8, 177, 11162, 211089, 211089, 24345134, 777327338, 7303173106, 113348166836, 1629791577175, 12382753941397, 222065520043726, 1130690839820485, 16880196382617641, 272809661453071426, 5596142534918510154, 14246558454299848087, 576523593214086813732, 4962284464340425145763
Offset: 0
Keywords
Examples
The unique number k in [1, 13^2] and congruent to 8 modulo 13 such that k^3 - 5 is divisible by 13^2 is k = 8, so a(2) = 8. The unique number k in [1, 13^3] and congruent to 8 modulo 13 such that k^3 - 5 is divisible by 13^3 is k = 177, so a(3) = 177.
Links
- Wikipedia, p-adic number
Crossrefs
Programs
-
PARI
a(n) = lift(sqrtn(5+O(13^n), 3))
Comments