A320916 Consider A010060 as a 2-adic number ...100110010110, then a(n) is its approximation up to 2^n.
0, 0, 2, 6, 6, 22, 22, 22, 150, 406, 406, 406, 2454, 2454, 10646, 27030, 27030, 92566, 92566, 92566, 616854, 616854, 2714006, 6908310, 6908310, 6908310, 40462742, 107571606, 107571606, 376007062, 376007062, 376007062, 2523490710, 6818458006, 6818458006, 6818458006
Offset: 0
Examples
a(1) = 0_2 = 0. a(2) = 10_2 = 2. a(3) = 110_2 = 6. a(4) = 0110_2 = 6. a(5) = 10110_2 = 22. ...
Links
- Paolo Xausa, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
With[{nmax = 50}, Table[FromDigits[#[[-n;;]], 2], {n, 0, nmax}] & [ThueMorse[Range[nmax, 0, -1]]]] (* or *) A320916[n_] := FromDigits[ThueMorse[Range[n-1, 0, -1]], 2]; Array[A320916, 51, 0] (* Paolo Xausa, Oct 18 2024 *)
-
PARI
a(n) = sum(i=0, n-1, 2^i*(hammingweight(i)%2))
Formula
a(n) = Sum_{i=0..n-1} A010060(i)*2^i (empty sum yields 0 for n = 0).
Comments