This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320924 #12 May 24 2021 00:13:19 %S A320924 1,4,9,12,16,25,27,30,36,40,48,49,63,64,70,75,81,84,90,100,108,112, %T A320924 120,121,144,147,154,160,165,169,175,189,192,196,198,210,220,225,243, %U A320924 250,252,256,264,270,273,280,286,289,300,324,325,336,343,351,352,360 %N A320924 Heinz numbers of multigraphical partitions. %C A320924 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %C A320924 An integer partition is multigraphical if it comprises the multiset of vertex-degrees of some multigraph. %C A320924 Also Heinz numbers of integer partitions of even numbers whose greatest part is less than or equal to half the sum of parts, i.e., numbers n whose sum of prime indices A056239(n) is even and at least twice the greatest prime index A061395(n). - _Gus Wiseman_, May 23 2021 %F A320924 Members m of A300061 such that A061395(m) <= A056239(m)/2. - _Gus Wiseman_, May 23 2021 %e A320924 The sequence of all multigraphical partitions begins: (), (11), (22), (211), (1111), (33), (222), (321), (2211), (3111), (21111), (44), (422), (111111), (431), (332), (2222), (4211), (3221), (3311), (22211), (41111), (32111), (55), (221111). %e A320924 From _Gus Wiseman_, May 23 2021: (Start) %e A320924 The sequence of terms together with their prime indices and a multigraph realizing each begins: %e A320924 1: () | {} %e A320924 4: (11) | {{1,2}} %e A320924 9: (22) | {{1,2},{1,2}} %e A320924 12: (112) | {{1,3},{2,3}} %e A320924 16: (1111) | {{1,2},{3,4}} %e A320924 25: (33) | {{1,2},{1,2},{1,2}} %e A320924 27: (222) | {{1,2},{1,3},{2,3}} %e A320924 30: (123) | {{1,3},{2,3},{2,3}} %e A320924 36: (1122) | {{1,2},{3,4},{3,4}} %e A320924 40: (1113) | {{1,4},{2,4},{3,4}} %e A320924 48: (11112) | {{1,2},{3,5},{4,5}} %e A320924 49: (44) | {{1,2},{1,2},{1,2},{1,2}} %e A320924 63: (224) | {{1,3},{1,3},{2,3},{2,3}} %e A320924 (End) %t A320924 prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]]; %t A320924 Select[Range[1000],prptns[Flatten[MapIndexed[Table[#2,{#1}]&,If[#==1,{},Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]]]!={}&] %Y A320924 These partitions are counted by A209816. %Y A320924 The case with odd weights is A322109. %Y A320924 The conjugate case of equality is A340387. %Y A320924 The conjugate version with odd weights allowed is A344291. %Y A320924 The conjugate opposite version is A344292. %Y A320924 The opposite version with odd weights allowed is A344296. %Y A320924 The conjugate version is A344413. %Y A320924 The conjugate opposite version with odd weights allowed is A344414. %Y A320924 The case of equality is A344415. %Y A320924 The opposite version is A344416. %Y A320924 A000070 counts non-multigraphical partitions. %Y A320924 A025065 counts palindromic partitions. %Y A320924 A035363 counts partitions into even parts. %Y A320924 A056239 adds up prime indices, row sums of A112798. %Y A320924 A110618 counts partitions that are the vertex-degrees of some set multipartition with no singletons. %Y A320924 A334201 adds up all prime indices except the greatest. %Y A320924 Cf. A000041, A000569, A007717, A096373, A265640, A283877, A306005, A318361, A320459, A320911, A320922, A320923, A320925. %K A320924 nonn %O A320924 1,2 %A A320924 _Gus Wiseman_, Oct 24 2018