cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320925 Heinz numbers of connected multigraphical partitions.

This page as a plain text file.
%I A320925 #7 Oct 24 2018 19:21:48
%S A320925 4,9,12,25,27,30,36,40,49,63,70,75,81,84,90,100,108,112,120,121,147,
%T A320925 154,165,169,175,189,196,198,210,220,225,243,250,252,264,270,273,280,
%U A320925 286,289,300,324,325,336,343,351,352,360,361,363,364,385,390,400,441
%N A320925 Heinz numbers of connected multigraphical partitions.
%C A320925 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%C A320925 An integer partition is connected and multigraphical if it comprises the multiset of vertex-degrees of some connected multigraph.
%e A320925 The sequence of all connected multigraphical partitions begins: (11), (22), (211), (33), (222), (321), (2211), (3111), (44), (422), (431), (332), (2222), (4211), (3221), (3311), (22211), (41111), (32111).
%t A320925 prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]];
%t A320925 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
%t A320925 Select[Range[1000],Select[prptns[Flatten[MapIndexed[Table[#2,{#1}]&,If[#==1,{},Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]]],Length[csm[#]]==1&]!={}&]
%Y A320925 Cf. A000070, A000569, A007717, A056239, A112798, A147878, A209816, A300061, A320459, A320911, A320921, A320923, A320924.
%K A320925 nonn
%O A320925 1,1
%A A320925 _Gus Wiseman_, Oct 24 2018