cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320959 The exponential limit of arctanh (odd indices only).

Original entry on oeis.org

1, 10, 1248, 631440, 852647040, 2462394816000, 13241729554099200, 120563962753538304000, 1733764260005567741952000, 37343395325946891151466496000, 1155311729350231354981936496640000, 49626886713956000390638096497377280000, 2878005957927359237424925417166882734080000
Offset: 0

Views

Author

Peter Luschny, Nov 08 2018

Keywords

Comments

See A320956 for definitions and comments.

Examples

			Illustration of the convergence in the sense of A320956:
   [0] 0, 0, 0,  0, 0,    0, 0,      0, 0,         0, ...
   [1] 0, 1, 0,  2, 0,   24, 0,    720, 0,     40320, ... A005359
   [2] 0, 1, 0,  8, 0,  384, 0,  46080, 0,  10321920, ... A067624
   [3] 0, 1, 0, 10, 0,  984, 0, 262800, 0, 132289920, ...
   [4] 0, 1, 0, 10, 0, 1224, 0, 514800, 0, 445576320, ...
   [5] 0, 1, 0, 10, 0, 1248, 0, 615600, 0, 725840640, ...
   [6] 0, 1, 0, 10, 0, 1248, 0, 630720, 0, 832527360, ...
   [7] 0, 1, 0, 10, 0, 1248, 0, 631440, 0, 851155200, ...
   [8] 0, 1, 0, 10, 0, 1248, 0, 631440, 0, 852606720, ...
   [9] 0, 1, 0, 10, 0, 1248, 0, 631440, 0, 852647040, ...
		

Crossrefs

Cf. A320955 (exp), A320962 (log(x+1)), A320956 (sec+tan), A320958 (arcsin), this sequence (arctanh).

Programs

  • Maple
    # The function ExpLim is defined in A320956.
    L := [ExpLim(28, arctanh)]: seq(L[2*n], n=1..13);
  • Mathematica
    m = 13; CoefficientList[ArcTanh[x] + O[x]^(2 m + 1), x]*Range[0, 2 m - 1]!*BellB[Range[0, 2 m - 1]] // DeleteCases[#, 0]& (* Jean-François Alcover, Jul 23 2019 *)

Formula

For n >= 3 and odd, -a(m)*Zeta(m) = g(n), where g denotes the exponential limit of log(Gamma(x + 1)) and m = (n-1)/2.