A320959 The exponential limit of arctanh (odd indices only).
1, 10, 1248, 631440, 852647040, 2462394816000, 13241729554099200, 120563962753538304000, 1733764260005567741952000, 37343395325946891151466496000, 1155311729350231354981936496640000, 49626886713956000390638096497377280000, 2878005957927359237424925417166882734080000
Offset: 0
Keywords
Examples
Illustration of the convergence in the sense of A320956: [0] 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... [1] 0, 1, 0, 2, 0, 24, 0, 720, 0, 40320, ... A005359 [2] 0, 1, 0, 8, 0, 384, 0, 46080, 0, 10321920, ... A067624 [3] 0, 1, 0, 10, 0, 984, 0, 262800, 0, 132289920, ... [4] 0, 1, 0, 10, 0, 1224, 0, 514800, 0, 445576320, ... [5] 0, 1, 0, 10, 0, 1248, 0, 615600, 0, 725840640, ... [6] 0, 1, 0, 10, 0, 1248, 0, 630720, 0, 832527360, ... [7] 0, 1, 0, 10, 0, 1248, 0, 631440, 0, 851155200, ... [8] 0, 1, 0, 10, 0, 1248, 0, 631440, 0, 852606720, ... [9] 0, 1, 0, 10, 0, 1248, 0, 631440, 0, 852647040, ...
Crossrefs
Programs
-
Maple
# The function ExpLim is defined in A320956. L := [ExpLim(28, arctanh)]: seq(L[2*n], n=1..13);
-
Mathematica
m = 13; CoefficientList[ArcTanh[x] + O[x]^(2 m + 1), x]*Range[0, 2 m - 1]!*BellB[Range[0, 2 m - 1]] // DeleteCases[#, 0]& (* Jean-François Alcover, Jul 23 2019 *)
Formula
For n >= 3 and odd, -a(m)*Zeta(m) = g(n), where g denotes the exponential limit of log(Gamma(x + 1)) and m = (n-1)/2.
Comments