cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320961 The exponential limit of (-x)!, rounded to the nearest integer.

Original entry on oeis.org

1, 1, 4, 27, 353, 6128, 145159, 4402407, 166608593, 7666343436, 420646243820, 27079750092637, 2018074017351900, 172131994564410026, 16641769389384512884, 1808431867178308597550, 219272140061011055068448, 29473880023661693302772550, 4366902281695075479226089449
Offset: 0

Views

Author

Peter Luschny, Nov 07 2018

Keywords

Comments

The exponential limit of a function is defined in A320956. Applied to (-x)! Maple returns a sequence of sums of Zeta values, powers of Pi, powers of Euler's gamma, etc.. The sequence starts: 1, gamma, (1/3)*Pi^2 + 2* gamma^2, 10*Zeta(3) + (5/2)*Pi^2*gamma + 5*gamma^3, ... These sums, rounded to the nearest integer, give the sequence.

Crossrefs

The exponential limit of other functions: A320955 (exp), A320962 (log(x+1)), A320958 (arcsin), A320959 (arctanh).

Programs

  • Maple
    explim := (len, f) -> seq(combinat:-bell(n)*((D@@n)(f))(0), n=0..len):
    explim(18, x -> (-x)!): map(round, [evalf(%, 46)]);
  • Mathematica
    m = 19; CoefficientList[(-x)!+O[x]^m, x]*Range[0, m-1]!*BellB[Range[0, m-1]] // Round (* Jean-François Alcover, Jul 21 2019 *)