cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320967 Expansion of Product_{k>0} theta_3(q^k)/theta_4(q^k), where theta_3() and theta_4() are the Jacobi theta functions.

This page as a plain text file.
%I A320967 #27 Feb 16 2025 08:33:57
%S A320967 1,4,12,36,92,220,508,1108,2332,4776,9492,18420,35036,65324,119708,
%T A320967 216044,384204,674236,1168968,2003460,3397300,5704148,9487740,
%U A320967 15642676,25577900,41495032,66817812,106837112,169677372,267755836,419948980,654799316,1015276412,1565765892
%N A320967 Expansion of Product_{k>0} theta_3(q^k)/theta_4(q^k), where theta_3() and theta_4() are the Jacobi theta functions.
%H A320967 Vaclav Kotesovec, <a href="/A320967/b320967.txt">Table of n, a(n) for n = 0..10000</a>
%H A320967 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>
%F A320967 Expansion of Product_{k>0} eta(q^(2*k))^6 / (eta(q^k)^4*eta(q^(4*k))^2).
%t A320967 With[{nmax=50}, CoefficientList[Series[Product[EllipticTheta[3, 0, q^k]/EllipticTheta[4, 0, q^k], {k, 1, nmax+2}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Oct 29 2018 *)
%o A320967 (PARI) m=50; q='q+O('q^m); Vec(prod(k=1,m+2, eta(q^(2*k))^6/(eta(q^k)^4* eta(q^(4*k))^2) )) \\ _G. C. Greubel_, Oct 29 2018
%Y A320967 Self-convolution of A320968.
%Y A320967 Cf. A000122, A002448, A007096, A301554, A320067, A320970.
%K A320967 nonn
%O A320967 0,2
%A A320967 _Seiichi Manyama_, Oct 25 2018