cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320970 Expansion of Product_{k>0} theta_4(q^k)/theta_3(q^k), where theta_3() and theta_4() are the Jacobi theta functions.

This page as a plain text file.
%I A320970 #26 Feb 16 2025 08:33:57
%S A320970 1,-4,4,-4,20,-28,20,-52,84,-104,156,-180,308,-460,468,-684,1028,
%T A320970 -1308,1592,-2084,2940,-3668,4564,-5716,7556,-9912,11484,-14616,19252,
%U A320970 -23548,28316,-35188,44724,-54532,65996,-79948,99784,-122796,143972,-175372,216524,-259996,308004,-371140
%N A320970 Expansion of Product_{k>0} theta_4(q^k)/theta_3(q^k), where theta_3() and theta_4() are the Jacobi theta functions.
%H A320970 Seiichi Manyama, <a href="/A320970/b320970.txt">Table of n, a(n) for n = 0..1000</a>
%H A320970 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>
%F A320970 Expansion of Product_{k>0} (eta(q^k)^4*eta(q^(4*k))^2) / eta(q^(2*k))^6.
%F A320970 a(n) ~ (-1)^n * exp(Pi*sqrt(log(2)*n)) * (log(2))^(1/4) / (4*n^(3/4)). - _Vaclav Kotesovec_, Oct 26 2018
%t A320970 With[{nmax=80}, CoefficientList[Series[Product[EllipticTheta[4, 0, q^k]/EllipticTheta[3, 0, q^k], {k, 1, nmax+2}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Oct 29 2018 *)
%o A320970 (PARI) m=80; q='q+O('q^m); Vec(1/prod(k=1,m+2, eta(q^(2*k))^6/( eta(q^k)^4* eta(q^(4*k))^2) )) \\ _G. C. Greubel_, Oct 29 2018
%Y A320970 Cf. A000122, A002448, A320068, A320908, A320967.
%K A320970 sign
%O A320970 0,2
%A A320970 _Seiichi Manyama_, Oct 25 2018