This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321010 #28 Jul 17 2021 11:23:30 %S A321010 0,1,1465,4376,89476 %N A321010 Numbers k such that f(k^2) = k, where f is Eric Angelini's remove-repeated-digits map x->A320486(x). %C A321010 _Lars Blomberg_ has discovered that if we start with any positive integer and repeatedly apply the map m -> A320486(m^2) then we will eventually either: %C A321010 - reach 0, %C A321010 - reach one of the four fixed points 1, 1465, 4376, 89476 (this sequence), %C A321010 - reach the period-10 cycle shown in A321011, or %C A321010 - reach the period-9 cycle shown in A321012. %C A321010 From _Lars Blomberg_, Nov 17 2018: (Start) %C A321010 Verified by testing all possible 8877690 start values that these are the only fixed points and cycles. %C A321010 Detailed counts are: %C A321010 - 561354 reach 0, %C A321010 - 963738 reach one of the four fixed points 1, 1465, 4376, 89476 (counts 946109, 434, 17065, 130), %C A321010 - 7271337 reach the period-10 cycle, and %C A321010 - 81261 reach the period-9 cycle. (End) %D A321010 Eric Angelini, Postings to Sequence Fans Mailing List, Oct 24 2018 and Oct 26 2018. %H A321010 N. J. A. Sloane, Coordination Sequences, Planing Numbers, and Other Recent Sequences (II), Experimental Mathematics Seminar, Rutgers University, Jan 31 2019, <a href="https://vimeo.com/314786942">Part I</a>, <a href="https://vimeo.com/314790822">Part 2</a>, <a href="https://oeis.org/A320487/a320487.pdf">Slides.</a> (Mentions this sequence) %Y A321010 Cf. A320485, A320486, A321011, A321012. %K A321010 nonn,base,fini %O A321010 1,3 %A A321010 _N. J. A. Sloane_, Nov 03 2018