This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321012 #16 Aug 08 2023 10:22:39 %S A321012 596,3216,103425,197325,897162,652,2510,631,3986,596,3216,103425, %T A321012 197325,897162,652,2510,631,3986,596,3216,103425,197325,897162,652, %U A321012 2510,631,3986,596,3216,103425,197325,897162,652,2510,631,3986,596,3216,103425,197325 %N A321012 Trajectory of 596 under repeated application of the map k -> A320486(k^2). %C A321012 k -> A320486(k) is Eric Angelini's remove-repeated-digits map. %C A321012 _Lars Blomberg_ has discovered that if we start with any positive integer and repeatedly apply the map k -> A320486(k^2) then we will eventually either: %C A321012 - reach 0, %C A321012 - reach one of the four fixed points 1, 1465, 4376, 89476 (see A321010) %C A321012 - reach the period-10 cycle shown in A321011, or %C A321012 - reach the period-9 cycle shown in A321012. %C A321012 Since there are only finitely many possible starting values with all digits distinct, it should not be difficult to check that this is true (and indeed, _Lars Blomberg_ may by now have completed the proof). %D A321012 Eric Angelini, Postings to Sequence Fans Mailing List, Oct 24 2018 and Oct 26 2018. %H A321012 Colin Barker, <a href="/A321012/b321012.txt">Table of n, a(n) for n = 1..1000</a> %H A321012 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,1). %F A321012 From _Colin Barker_, Nov 04 2018: (Start) %F A321012 G.f.: x*(596 + 3216*x + 103425*x^2 + 197325*x^3 + 897162*x^4 + 652*x^5 + 2510*x^6 + 631*x^7 + 3986*x^8) / ((1 - x)*(1 + x + x^2)*(1 + x^3 + x^6)). %F A321012 a(n) = a(n-9) for n>9. %F A321012 (End) %e A321012 The cycle of length 9 is (596, 3216, 103425, 197325, 897162, 652, 2510, 631, 3986). %t A321012 PadRight[{},80,{596,3216,103425,197325,897162,652,2510,631,3986}] (* _Harvey P. Dale_, Aug 08 2023 *) %o A321012 (PARI) Vec(x*(596 + 3216*x + 103425*x^2 + 197325*x^3 + 897162*x^4 + 652*x^5 + 2510*x^6 + 631*x^7 + 3986*x^8) / ((1 - x)*(1 + x + x^2)*(1 + x^3 + x^6)) + O(x^40)) \\ _Colin Barker_, Nov 04 2018 %Y A321012 Cf. A320485, A320486, A321010, A321011. %K A321012 nonn,base,easy %O A321012 1,1 %A A321012 _N. J. A. Sloane_, Nov 04 2018