This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321058 #28 Sep 15 2022 11:54:28 %S A321058 1,2,44,561329,9549959,42932384,13044904289,277344139214, %T A321058 2045466215756534,47702521115271164 %N A321058 Indices of records in A067849. %C A321058 The corresponding record values are 2,4,6,7,8,9,10,12,13,14. %C A321058 From _David A. Corneth_, Nov 10 2018: (Start) %C A321058 Terms a(n) are of the form 3*k+2 for n > 1. %C A321058 If 2^k - 1 is composite then a(n) is not divisible by any prime factor of 2^k-1 for n > k. So for example, gcd(a(n), 105) = 1 for n > 5. (End) %C A321058 From _Glen Whitney_, Sep 14 2022: (Start) %C A321058 Similarly to Corneth's observations, modulo any prime p, any residue for a(n) of the form 2^k - 1 mod p is forbidden for n greater than or equal to the number of such residues; for example a(n) may not be congruent to 0, 1, or 3 mod 7 for n >= 3. %C A321058 For n > 2, if a(n) appears in this sequence, 2a(n) + 1 must appear in A057331. (End) %e A321058 2 is a term because A067849(2) = 4 > A067849(1) = 2. %e A321058 44 is a term because A067849(44) = 6 > A067869(2) = 4. %o A321058 (PARI) b(n) = {my(nb = 0, newn); while (isprime(newn=2*n+1), nb++; n = newn); nb;} \\ A067849 %o A321058 lista(nn) = {my(mmax = -1, mm); for (n=1, nn, if ((mm=b(n)) > mmax, mmax = mm; print1(n, ", ")););} \\ _Michel Marcus_, Nov 10 2018 %Y A321058 Cf. A067849, A005602, A057331, A063378. %K A321058 nonn,more %O A321058 1,2 %A A321058 _Torlach Rush_, Oct 26 2018 %E A321058 a(7) from _Amiram Eldar_, Nov 10 2018 %E A321058 a(8)-a(10) from A057331 by _Glen Whitney_, Sep 14 2022