cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321069 Greatest prime factor of n^3+2.

This page as a plain text file.
%I A321069 #23 Dec 15 2024 04:35:24
%S A321069 3,5,29,11,127,109,23,257,43,167,43,173,733,1373,307,683,983,2917,
%T A321069 2287,4001,157,71,283,223,5209,47,127,3659,24391,587,9931,113,433,
%U A321069 6551,809,569,307,27437,433,10667,439,239,1559,223,91127,16223,4153,457,39217,62501
%N A321069 Greatest prime factor of n^3+2.
%H A321069 Charles R Greathouse IV, <a href="/A321069/b321069.txt">Table of n, a(n) for n = 1..10000</a>
%H A321069 D. R. Heath-Brown, <a href="https://pdfs.semanticscholar.org/9d3d/19732239787034cfce7a81a62e6afb374c0f.pdf">The largest prime factor of x^3+2</a>, Proceedings of the London Mathematical Society, 82:3 (2000), pp. 554-596.
%H A321069 Christopher Hooley, <a href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002195364">On the greatest prime factor of a cubic polynomial</a>, Journal für die reine und angewandte Mathematik, 303 (1978), pp. 21-50.
%H A321069 A. J. Irving, <a href="https://arxiv.org/abs/1412.0024">The largest prime factor of x^3+2</a>, arXiv:1412.0024 [math.NT], 2014.
%t A321069 Table[FactorInteger[n^3 + 2] [[-1, 1]], {n, 80}] (* _Vincenzo Librandi_, Oct 27 2018 *)
%o A321069 (Magma) [Maximum(PrimeDivisors(n^3 + 2)): n in [1..60]]; // _Vincenzo Librandi_, Oct 27 2018
%o A321069 (PARI) a(n) = vecmax(factor(n^3+2)[,1]); \\ _Michel Marcus_, Oct 27 2018
%Y A321069 Greatest prime factors of polynomials: A006530 (n), A076565 (2n+1), A076566 (3n+3), A076567 (4n+6), A164314 (n^2-2), A076605 (n^2-1), A014442 (n^2+1), A069902 (n^2+n), A074399 (n^2+n), A199423 (2n^2+n), A089619 (2n^2+2n+1), A037464 (4n^2-1), A253254 (9n^2-7n), A093074 (n^3-n), A081257 (n^3-1), A081256 (n^3+1), A321069(n^3+2), A281793 (n^3+n^2+n+1), A281793 (n^4-1), A096172 (n^4+1), A190136 (n^4 + 6n^3 + 11n^2 + 6n), A140538 (2n^4+1), A240548 (n^5+1), A281794 (n^5+n^3+n^2+1), A240549 (n^6+1), A240550 (n^7+1), A240551 (n^8+1), A240552 (n^9+1), A240553 (n^10+1).
%K A321069 nonn,easy
%O A321069 1,1
%A A321069 _Charles R Greathouse IV_, Oct 27 2018