This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321074 #23 Dec 05 2022 08:35:48 %S A321074 5,2,6,8,1,9,9,4,3,9,2,8,3,4,9,1,9,3,3,0,5,5,0,9,8,4,1,9,6,9,3,0,7,5, %T A321074 8,6,3,9,0,9,7,7,9,8,10,5,8,6,9,3,5,9,4,7,2,1,1,0,1,0,8,1,6,5,7,10,8, %U A321074 2,4,7,8,7,2,3,3,1,10,6,0,10,0,6,2,5,1,10,3 %N A321074 Digits of one of the two 11-adic integers sqrt(3). %C A321074 This square root of 3 in the 11-adic field ends with digit 5. The other, A321075, ends with digit 6. %H A321074 Seiichi Manyama, <a href="/A321074/b321074.txt">Table of n, a(n) for n = 0..10000</a> %H A321074 Peter Bala, <a href="/A051277/a051277.pdf">Using Chebyshev polynomials to find the p-adic square roots of 2 and 3</a>, Dec 2022. %H A321074 Wikipedia, <a href="https://en.wikipedia.org/wiki/P-adic_number">p-adic number</a> %F A321074 a(n) = (A321072(n+1) - A321072(n))/11^n. %F A321074 For n > 0, a(n) = 10 - A321075(n). %F A321074 This 11-adic integer equals the 11-adic limit as n -> oo of 2*T(11^n,5/2), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - _Peter Bala_, Dec 05 2022 %e A321074 ...9093685703969148905503391943829349918625. %o A321074 (PARI) a(n) = truncate(sqrt(3+O(11^(n+1))))\11^n %o A321074 (PARI) seq(n)={Vecrev(digits(truncate(sqrt(3 + O(11^n))), 11), n)} \\ _Andrew Howroyd_, Nov 03 2018 %Y A321074 Cf. A321072, A321075, A322087, A322088. %K A321074 nonn,base,easy %O A321074 0,1 %A A321074 _Jianing Song_, Oct 27 2018