cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321075 Digits of one of the two 11-adic integers sqrt(3).

This page as a plain text file.
%I A321075 #18 Dec 05 2022 08:35:44
%S A321075 6,8,4,2,9,1,1,6,7,1,8,2,7,6,1,9,1,7,7,10,5,5,10,1,2,6,9,1,4,1,7,10,3,
%T A321075 5,2,4,7,1,10,1,3,3,1,2,0,5,2,4,1,7,5,1,6,3,8,9,9,10,9,10,2,9,4,5,3,0,
%U A321075 2,8,6,3,2,3,8,7,7,9,0,4,10,0,10,4,8,5,9,0,7
%N A321075 Digits of one of the two 11-adic integers sqrt(3).
%C A321075 This square root of 3 in the 11-adic field ends with digit 6. The other, A321074, ends with digit 5.
%H A321075 Seiichi Manyama, <a href="/A321075/b321075.txt">Table of n, a(n) for n = 0..10000</a>
%H A321075 Peter Bala, <a href="/A051277/a051277.pdf">Using Chebyshev polynomials to find the p-adic square roots of 2 and 3</a>, Dec 2022.
%H A321075 Wikipedia, <a href="https://en.wikipedia.org/wiki/P-adic_number">p-adic number</a>
%F A321075 a(n) = (A321073(n+1) - A321073(n))/11^n.
%F A321075 For n > 0, a(n) = 10 - A321074(n).
%F A321075 This 11-adic integer equals the 11-adic limit as n -> oo of 2*T(11^n,3), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - _Peter Bala_, Dec 05 2022
%e A321075 ...1A174253A71419621A55A7719167281761192486.
%o A321075 (PARI) a(n) = truncate(-sqrt(3+O(11^(n+1))))\11^n
%Y A321075 Cf. A321073, A321074.
%K A321075 nonn,base,easy
%O A321075 0,1
%A A321075 _Jianing Song_, Oct 27 2018