This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321077 #10 Nov 14 2018 08:47:05 %S A321077 0,7,73,73,8059,154469,315520,9173325,48147667,691224310,7765067383, %T A321077 189327039590,474638710201,9889923840364,217026196703950, %U A321077 3634774698953119,11989271037784421,11989271037784421,2539224413534253276,2539224413534253276,124857405310363345858 %N A321077 One of the two successive approximations up to 11^n for 11-adic integer sqrt(5). Here the 7 (mod 11) case (except for n = 0). %C A321077 For n > 0, a(n) is the unique solution to x^2 == 5 (mod 11^n) in the range [0, 11^n - 1] and congruent to 7 modulo 11. %C A321077 A321076 is the approximation (congruent to 4 mod 11) of another square root of 5 over the 11-adic field. %H A321077 Wikipedia, <a href="https://en.wikipedia.org/wiki/P-adic_number">p-adic number</a> %F A321077 For n > 0, a(n) = 11^n - A321076(n). %F A321077 a(n) = Sum_{i=0..n-1} A321079(i)*11^i. %e A321077 7^2 = 49 = 5 + 4*11. %e A321077 73^2 = 5329 = 5 + 44*11^2 = 5 + 4*11^3. %o A321077 (PARI) a(n) = truncate(-sqrt(5+O(11^n))) %Y A321077 Cf. A321076, A321079. %K A321077 nonn %O A321077 0,2 %A A321077 _Jianing Song_, Oct 27 2018