cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321081 Digits of the 2-adic integer log_5(-3).

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1
Offset: 0

Views

Author

Jianing Song, Oct 27 2018

Keywords

Comments

See A321080 for the definition of log_5(-3) and more information.
Multiplicative inverse of A321083.

Examples

			log_5(-3) = ...1000011001011001010001001010011010100011.
		

Crossrefs

Programs

  • PARI
    b(n) = {my(v=vector(n)); v[2]=0; for(n=3, n, v[n] = v[n-1] + if(Mod(5,2^n)^v[n-1] + 3==0, 0, 2^(n-3))); v}
    a(n) = b(n+3)[n+3]\2^n

Formula

a(n) = 0 if 5^A321080(n+2) + 3 is divisible by 2^(n+3), otherwise 1.
Equals to A321694/A152228.