cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321083 Digits of the 2-adic integer log_(-3)(5).

This page as a plain text file.
%I A321083 #11 Nov 21 2018 07:31:41
%S A321083 1,1,0,1,0,0,0,0,1,0,1,1,1,1,0,0,0,0,0,1,0,0,1,1,1,0,1,0,1,0,1,1,1,1,
%T A321083 1,1,0,1,1,0,0,0,0,1,0,1,1,1,0,1,0,1,1,1,1,0,1,1,0,0,0,1,0,0,1,0,1,1,
%U A321083 1,1,1,0,1,0,0,0,0,0,1,1,1,1,1,1,0,0,0
%N A321083 Digits of the 2-adic integer log_(-3)(5).
%C A321083 See A321082 for the definition of log_5(-3) and more information.
%C A321083 Multiplicative inverse of A321081.
%H A321083 Jianing Song, <a href="/A321083/b321083.txt">Table of n, a(n) for n = 0..1000</a>
%H A321083 Wikipedia, <a href="https://en.wikipedia.org/wiki/P-adic_number">p-adic number</a>
%F A321083 a(n) = 0 if (-3)^A321082(n+2) - 5 is divisible by 2^(n+3), otherwise 1.
%F A321083 Equals to A152228/A321694.
%e A321083 log_(-3)(5) = ...0110111111010101110010000011110100001011.
%o A321083 (PARI) b(n) = {my(v=vector(n)); v[3]=1; for(n=4, n, v[n] = v[n-1] + if(Mod(-3,2^n)^v[n-1] - 5==0, 0, 2^(n-3))); v}
%o A321083 a(n) = b(n+3)[n+3]\2^n
%Y A321083 Cf. A321081, A321082, A321694.
%K A321083 nonn,base
%O A321083 0,1
%A A321083 _Jianing Song_, Oct 27 2018