This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321083 #11 Nov 21 2018 07:31:41 %S A321083 1,1,0,1,0,0,0,0,1,0,1,1,1,1,0,0,0,0,0,1,0,0,1,1,1,0,1,0,1,0,1,1,1,1, %T A321083 1,1,0,1,1,0,0,0,0,1,0,1,1,1,0,1,0,1,1,1,1,0,1,1,0,0,0,1,0,0,1,0,1,1, %U A321083 1,1,1,0,1,0,0,0,0,0,1,1,1,1,1,1,0,0,0 %N A321083 Digits of the 2-adic integer log_(-3)(5). %C A321083 See A321082 for the definition of log_5(-3) and more information. %C A321083 Multiplicative inverse of A321081. %H A321083 Jianing Song, <a href="/A321083/b321083.txt">Table of n, a(n) for n = 0..1000</a> %H A321083 Wikipedia, <a href="https://en.wikipedia.org/wiki/P-adic_number">p-adic number</a> %F A321083 a(n) = 0 if (-3)^A321082(n+2) - 5 is divisible by 2^(n+3), otherwise 1. %F A321083 Equals to A152228/A321694. %e A321083 log_(-3)(5) = ...0110111111010101110010000011110100001011. %o A321083 (PARI) b(n) = {my(v=vector(n)); v[3]=1; for(n=4, n, v[n] = v[n-1] + if(Mod(-3,2^n)^v[n-1] - 5==0, 0, 2^(n-3))); v} %o A321083 a(n) = b(n+3)[n+3]\2^n %Y A321083 Cf. A321081, A321082, A321694. %K A321083 nonn,base %O A321083 0,1 %A A321083 _Jianing Song_, Oct 27 2018