This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321085 #4 Oct 27 2018 10:52:29 %S A321085 1,2,6,36,330,4092,63308,1165952,24802704,596862420,16003332092, %T A321085 472588688880,15231153085304,531801227022912,19992702649780800, %U A321085 805099660439308672,34574148236596003008,1577229602738525889984,76172611622917782581040,3882814240467405224924960,208333046141920439476582608,11737307286279509352537747760 %N A321085 O.g.f. A(x) satisfies: [x^n] exp(-n*A(x)) / (1 - n*x - n*x^2) = 0, for n > 0. %C A321085 It is remarkable that this sequence should consist entirely of integers. %C A321085 Compare to: [x^n] exp(n*G(x)) * (1 - n*x - n*x^2) = 0, for n > 0, when G(x) = x + x^2 + x*G(x)*G'(x), where G(x)/x is the o.g.f. of A321086. %e A321085 O.g.f.: A(x) = x + 2*x^2 + 6*x^3 + 36*x^4 + 330*x^5 + 4092*x^6 + 63308*x^7 + 1165952*x^8 + 24802704*x^9 + 596862420*x^10 + ... %e A321085 ILLUSTRATION OF DEFINITION. %e A321085 The table of coefficients of x^k/k! in exp(-n*A(x)) / (1 - n*x - n*x^2) begins: %e A321085 n=1: [1, 0, -1, -28, -819, -39056, -2923925, -317422764, ...]; %e A321085 n=2: [1, 0, 0, -32, -1392, -75552, -5832320, -635767680, ...]; %e A321085 n=3: [1, 0, 3, 0, -1323, -100008, -8542665, -955410984, ...]; %e A321085 n=4: [1, 0, 8, 80, 0, -89024, -10215680, -1248268032, ...]; %e A321085 n=5: [1, 0, 15, 220, 3405, 0, -8752325, -1409888100, ...]; %e A321085 n=6: [1, 0, 24, 432, 9936, 234144, 0, -1176833664, ...]; %e A321085 n=7: [1, 0, 35, 728, 20853, 710248, 23232055, 0, ...]; %e A321085 n=8: [1, 0, 48, 1120, 37632, 1560192, 72348160, 3135469056, 0, ...]; ... %e A321085 in which the coefficient of x^n in row n forms a diagonal of zeros. %e A321085 RELATED SERIES. %e A321085 exp(A(x)) = 1 + x + 5*x^2/2! + 49*x^3/3! + 1081*x^4/4! + 46001*x^5/5! + 3272701*x^6/6! + 345526945*x^7/7! + 50126588849*x^8/8! + ... %e A321085 exp(-A(x)) = 1 - x - 3*x^2/2! - 25*x^3/3! - 695*x^4/4! - 34401*x^5/5! - 2665019*x^6/6! - 295314937*x^7/7! - 44140455855*x^8/8! + ... %o A321085 (PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(-m*x*Ser(A))/(1-m*x-m*x^2 +x^2*O(x^m)))[m+1]/m ); A[n]} %o A321085 for(n=1, 30, print1(a(n), ", ")) %Y A321085 Cf. A319938, A321086. %K A321085 nonn %O A321085 1,2 %A A321085 _Paul D. Hanna_, Oct 27 2018