This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321086 #7 Oct 27 2018 11:13:13 %S A321086 1,2,6,32,220,1812,17108,180512,2093760,26396160,358741328,5223336288, %T A321086 81079811280,1336407320080,23311138957200,429063111959808, %U A321086 8311760620707648,169072470759431232,3603666131945918144,80327823251439861760,1869212211081119135616,45331401566332423284864,1143967734536203174726784,29996686272924492809481216,816185909551276017516640000 %N A321086 O.g.f. A(x) satisfies: [x^n] exp(n*A(x)) * (1 - n*x - n*x^2) = 0, for n > 0. %C A321086 It is remarkable that this sequence should consist entirely of integers. %C A321086 Compare to: [x^n] exp(n*G(x)) * (1 - n*x) = 0, for n > 0, when G(x) = x + x*G(x)*G'(x), where G(x)/x is the o.g.f. of A088716. %F A321086 O.g.f. A(x) satisfies: A(x) = x + x^2 + x*A(x)*A'(x). %e A321086 O.g.f.: A(x) = x + 2*x^2 + 6*x^3 + 32*x^4 + 220*x^5 + 1812*x^6 + 17108*x^7 + 180512*x^8 + 2093760*x^9 + 26396160*x^10 + ... %e A321086 ILLUSTRATION OF DEFINITION. %e A321086 The table of coefficients of x^k/k! in exp(-n*A(x)) * (1 - n*x - n*x^2) begins: %e A321086 n=1: [1, 0, 1, 28, 729, 26416, 1321225, 87466716, ...]; %e A321086 n=2: [1, 0, 0, 32, 1200, 49152, 2569600, 172974720, ...]; %e A321086 n=3: [1, 0, -3, 0, 1089, 60408, 3509325, 246760776, ...]; %e A321086 n=4: [1, 0, -8, -80, 0, 49024, 3777280, 293683968, ...]; %e A321086 n=5: [1, 0, -15, -220, -2535, 0, 2848825, 291386100, ...]; %e A321086 n=6: [1, 0, -24, -432, -7056, -105984, 0, 208089216, ...]; %e A321086 n=7: [1, 0, -35, -728, -14175, -293048, -5733875, 0, ...]; %e A321086 n=8: [1, 0, -48, -1120, -24576, -590592, -15603200, -391709184, 0, ...]; ... %e A321086 in which the coefficient of x^n in row n forms a diagonal of zeros. %e A321086 RELATED SERIES. %e A321086 (a) Differential Equation. %e A321086 O.g.f. A(x) satisfies: A(x) = x + x^2 + x*A(x)*A'(x) where %e A321086 A'(x) = 1 + 4*x + 18*x^2 + 128*x^3 + 1100*x^4 + 10872*x^5 + 119756*x^6 + ... %e A321086 A(x)*A'(x) = x + 6*x^2 + 32*x^3 + 220*x^4 + 1812*x^5 + 17108*x^6 + 17108*x^7 + ... %e A321086 so that A(x) - x*A(x)*A'(x) = x + x^2. %e A321086 (b) Exponentiation. %e A321086 exp(A(x)) = 1 + x + 5*x^2/2! + 49*x^3/3! + 985*x^4/4! + 32321*x^5/5! + 1544701*x^6/6! + 99637105*x^7/7! + 8257877489*x^8/8! + ... %e A321086 exp(-A(x)) = 1 - x - 3*x^2/2! - 25*x^3/3! - 599*x^4/4! - 21681*x^5/5! - 1106939*x^6/6! - 74873737*x^7/7! - 6431021295*x^8/8! + ... %o A321086 (PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = -Vec( exp(m*x*Ser(A))*(1-m*x-m*x^2 +x^2*O(x^m)))[m+1]/m ); A[n]} %o A321086 for(n=1, 30, print1(a(n), ", ")) %Y A321086 Cf. A088716, A321085, A321087. %K A321086 nonn %O A321086 1,2 %A A321086 _Paul D. Hanna_, Oct 27 2018