This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321088 #29 Oct 01 2019 09:12:28 %S A321088 1,1,2,1,4,2,4,-1,9,3,11,-4,17,-2,11,-24,31,-3,39,-35,70,-14,47,-107, %T A321088 112,-27,122,-163,198,-90,93,-409,282,-108,329,-487,601,-160,324, %U A321088 -1076,835,-165,907,-1298,1478,-429,565,-2973,1745,-427,1999,-3149,3587,-528 %N A321088 G.f. satisfies: A(x) = 1/(1 - x) * Product_{k>0} A(x^(2*k)) / Product_{k>1} A(x^(2*k-1)). %H A321088 Seiichi Manyama, <a href="/A321088/b321088.txt">Table of n, a(n) for n = 0..10000</a> %H A321088 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %F A321088 Euler transform of A067856. %F A321088 G.f.: Product_{k>0} 1/(1 - x^k)^A067856(k). %F A321088 Product_{k>0} A(x^k) = Product_{k>=0} 1/(1 - x^(2^k))^(2^k). (Cf. A073709.) %t A321088 b[n_] := If[n == 1, 1, Product[{p, e} = pe; If[2 == p, e--, If[e > 1, p = 0, p = -1]]; p^e, {pe, FactorInteger[n]}]]; %t A321088 etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b]; %t A321088 a = etr[b]; %t A321088 a /@ Range[0, 100] (* _Jean-François Alcover_, Oct 01 2019 *) %Y A321088 Convolution inverse of A321326. %Y A321088 Cf. A067856, A073709, A129374. %K A321088 sign,look %O A321088 0,3 %A A321088 _Seiichi Manyama_, Nov 05 2018