This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321120 #7 Dec 01 2018 08:59:32 %S A321120 3,9,4,3,3,7,5,6,7,2,9,7,4,0,6,4,4,1,1,2,7,2,8,7,1,9,5,1,2,5,4,8,9,3, %T A321120 6,3,9,1,1,9,0,0,4,3,7,8,1,7,5,3,1,7,1,9,0,0,4,6,5,0,5,8,1,6,2,0,9,9, %U A321120 4,4,1,8,0,7,5,7,3,3,3,3,6,4,2,3,4,2,8 %N A321120 Decimal expansion of (3 + sqrt(3))/12. %C A321120 The smallest weight in Holladay-Sard's quadrature formula for semi-infinite integrals. %D A321120 Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967. %H A321120 John C. Holladay, <a href="https://doi.org/10.1090/S0025-5718-1957-0093894-6">A smoothest curve approximation</a>, Math. Comp. Vol. 11 (1957), 233-243. %H A321120 Leroy F. Meyers and Arthur Sard, <a href="https://doi.org/10.1002/sapm1950291118">Best approximate integration formulas</a>, J. Math. Phys. Vol. 29 (1950), 118-123. %H A321120 Arthur Sard, <a href="https://doi.org/10.2307/2372095">Best approximate integration formulas; best approximation formulas</a>, American Journal of Mathematics Vol. 71 (1949), 80-91. %H A321120 Frans Schurer, <a href="https://research.tue.nl/en/publications/on-natural-cubic-splines-with-an-application-to-numerical-integra">On natural cubic splines, with an application to numerical integration formulae</a>, EUT report. WSK, Dept. of Mathematics and Computing Science Vol. 70-WSK-04 (1970), 1-32. %F A321120 Equals lim_{n->infinity} A321118(0,n)/A321119(n). %F A321120 Irrational number represented by the periodic continued fraction [0, 2, 1, 1; [6, 2]]. %F A321120 Largest real root of 1 - 12*x + 24*x^2. %e A321120 0.3943375672974064411272871951... %p A321120 Digits := 1000; evalf((3 + sqrt(3))/12); %t A321120 RealDigits[(3 + Sqrt[3])/12, 10, 100][[1]] %o A321120 (PARI) (3 + sqrt(3))/12 %Y A321120 Cf. A020805, A165663. %Y A321120 Cf. A321118, A321119. %K A321120 nonn,easy,cons %O A321120 0,1 %A A321120 _Franck Maminirina Ramaharo_, Nov 09 2018