This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321124 #11 Dec 30 2018 05:09:14 %S A321124 1,5,13,33,73,141,245,393,593,853,1181,1585,2073,2653,3333,4121,5025, %T A321124 6053,7213,8513,9961,11565,13333,15273,17393,19701,22205,24913,27833, %U A321124 30973,34341,37945,41793,45893,50253,54881,59785,64973,70453,76233,82321,88725 %N A321124 a(n) = (4*n^3 - 6*n^2 + 14*n + 3)/3. %C A321124 For n >= 5, a(n) is the number of evaluation points on the n-dimensional cube in Phillips-Dobrodeev's degree 7 cubature rule. %H A321124 Ronald Cools, <a href="http://nines.cs.kuleuven.be/ecf/">Encyclopaedia of Cubature Formulas</a> %H A321124 Ronald Cools, <a href="https://doi.org/10.1016/S0377-0427(99)00229-0">Monomial cubature rules since "Stroud": a compilation - part 2</a>, Journal of Computational and Applied Mathematics - Numerical evaluation of integrals Vol. 112 (1999), 21-27. %H A321124 Ronald Cools and Philip Rabinowitz, <a href="https://doi.org/10.1016/0377-0427(93)90027-9">Monomial cubature rules since "Stroud": a compilation</a>, Journal of Computational and Applied Mathematics Vol. 48 (1993), 309-326. %H A321124 L. N. Dobrodeev, <a href="https://doi.org/10.1016/0041-5553(70)90084-4">Cubature formulas of the seventh order of accuracy for a hypersphere and a hypercube</a>, USSR Computational Mathematics and Mathematical Physics Vol. 10 (1970), 252-253. %H A321124 G. M. Phillips, <a href="https://doi.org/10.1093/comjnl/10.3.297">Numerical integration over an N-dimensional rectangular region</a>, The Computer Journal Vol. 10 (1967), 297-299. %H A321124 Rudolf M. Schürer, <a href="https://pdfs.semanticscholar.org/9d10/b4c1dc2118cce7865a193660be05e90d145a.pdf">High-Dimensional Numerical Integration on Parallel Computers</a>, Phd Dissertation, 2001. p. 80. %H A321124 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A321124 a(n) = 8*binomial(n, 3) + 4*binomial(n, 2) + 4*binomial(n, 1) + 1. %F A321124 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n >= 4. %F A321124 a(n) = a(n-1) + A128445(n+1), n >= 1. %F A321124 E.g.f.: (1/3)*(3 + 12*x + 6*x^2 + 4*x^3)*exp(x). %F A321124 G.f.: (1 + x - x^2 + 7*x^3)/(1 - x)^4. %t A321124 Table[(4*n^3 - 6*n^2 + 14*n + 3)/3, {n, 0, 50}] %o A321124 (Maxima) makelist((4*n^3 - 6*n^2 + 14*n + 3)/3, n, 0, 50); %Y A321124 Cf. A000292, A128445, A161680, A174794, A322594, A322595. %K A321124 nonn,easy %O A321124 0,2 %A A321124 _Franck Maminirina Ramaharo_, Dec 17 2018