This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321128 #14 Oct 30 2018 04:37:33 %S A321128 2,3,5,7,1,9,4,6,8,0,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71, %T A321128 73,79,83,89,97,10,12,27,39,14,49,15,51,57,16,63,18,81,91,93,99,21,22, %U A321128 33,24,25,26,69,77,28,30,34,35,36,38,40,42,44,45,46,48,87 %N A321128 Single-digit numbers in the order in which they first appear in the decimal expansions of prime numbers, followed by the two-digit numbers in the order in which they appear, then the three-digit numbers, and so on. %C A321128 This sequence is a variant of A321043. %C A321128 This sequence establishes a bijection from the positive integers to the nonnegative integers; see A320938 for the inverse. %C A321128 Prime numbers appear in increasing order. %H A321128 Rémy Sigrist, <a href="/A321128/b321128.txt">Table of n, a(n) for n = 1..10000</a> %H A321128 Rémy Sigrist, <a href="/A321128/a321128.png">Colored scatterplot of the first 100000 terms</a> %H A321128 Rémy Sigrist, <a href="/A321128/a321128_1.png">Scatterplot of the first 100000 terms of the analog for the Euler totient function (A000010)</a> %H A321128 Rémy Sigrist, <a href="/A321128/a321128.gp.txt">PARI program for A321128</a> %e A321128 The first terms, alongside the corresponding prime numbers, are: %e A321128 n a(n) Prime %e A321128 -- ---- ----- %e A321128 1 2 2 %e A321128 2 3 3 %e A321128 3 5 5 %e A321128 4 7 7 %e A321128 5 1 11 %e A321128 6 9 19 %e A321128 7 4 41 %e A321128 8 6 61 %e A321128 9 8 83 %e A321128 10 0 101 %e A321128 11 11 11 %e A321128 12 13 13 %e A321128 ... %e A321128 30 89 89 %e A321128 31 97 97 %e A321128 32 10 101 %e A321128 33 12 127 %e A321128 34 27 127 %e A321128 35 39 139 %e A321128 36 14 149 %e A321128 37 49 149 %o A321128 (PARI) See Links section. %Y A321128 Cf. A000010, A000040, A320938 (inverse), A321043. %K A321128 nonn,base,look %O A321128 1,1 %A A321128 _Rémy Sigrist_, Oct 27 2018