This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321141 #26 Jul 29 2023 06:43:06 %S A321141 1,6,29,291,3127,48246,823545,16909060,387459858,10019533302, %T A321141 285311670613,8920489178073,302875106592255,11113363271736486, %U A321141 437893951444713443,18447307036548136965,827240261886336764179,39346708467688595378892,1978419655660313589123981 %N A321141 a(n) = Sum_{d|n} sigma_n(d). %H A321141 Seiichi Manyama, <a href="/A321141/b321141.txt">Table of n, a(n) for n = 1..386</a> %H A321141 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %F A321141 a(n) = [x^n] Sum_{k>=1} sigma_n(k)*x^k/(1 - x^k). %F A321141 a(n) = Sum_{d|n} d^n*tau(n/d). %F A321141 a(n) ~ n^n. - _Vaclav Kotesovec_, Feb 16 2020 %p A321141 with(numtheory): seq(coeff(series(add(sigma[n](k)*x^k/(1-x^k),k=1..n),x,n+1), x, n), n = 1 .. 20); # _Muniru A Asiru_, Oct 28 2018 %t A321141 Table[Sum[DivisorSigma[n, d], {d, Divisors[n]}] , {n, 19}] %t A321141 Table[SeriesCoefficient[Sum[DivisorSigma[n, k] x^k/(1 - x^k), {k, 1, n}], {x, 0, n}], {n, 19}] %o A321141 (PARI) a(n) = sumdiv(n, d, sigma(d, n)); \\ _Michel Marcus_, Oct 28 2018 %o A321141 (Python) %o A321141 from sympy import divisor_sigma, divisors %o A321141 def A321141(n): %o A321141 return sum(divisor_sigma(d,0)*(n//d)**n for d in divisors(n,generator=True)) # _Chai Wah Wu_, Feb 15 2020 %o A321141 (Magma) [&+[DivisorSigma(n, d):d in Divisors(n)]:n in [1..20]]; // _Vincenzo Librandi_, Feb 16 2020 %Y A321141 Cf. A000005, A007429, A007433, A023887, A319194, A320940, A321140. %K A321141 nonn %O A321141 1,2 %A A321141 _Ilya Gutkovskiy_, Oct 28 2018