cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321142 Number of strict integer partitions of 2*n with no subset summing to n.

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 11, 15, 23, 30, 43, 57, 79, 102, 138, 174, 232, 292, 375, 471, 602, 741, 935, 1148, 1425, 1733, 2137, 2571, 3156, 3789, 4557, 5470, 6582, 7796, 9317, 11027, 13058, 15400, 18159, 21249, 24971, 29170, 33986, 39596, 46073, 53219, 61711, 71330, 82171
Offset: 0

Views

Author

Gus Wiseman, Oct 28 2018

Keywords

Examples

			The a(1) = 1 through a(8) = 23 partitions:
  (2)  (4)    (6)    (8)      (10)     (12)     (14)       (16)
       (3,1)  (4,2)  (5,3)    (6,4)    (7,5)    (8,6)      (9,7)
              (5,1)  (6,2)    (7,3)    (8,4)    (9,5)      (10,6)
                     (7,1)    (8,2)    (9,3)    (10,4)     (11,5)
                     (5,2,1)  (9,1)    (10,2)   (11,3)     (12,4)
                              (6,3,1)  (11,1)   (12,2)     (13,3)
                              (7,2,1)  (5,4,3)  (13,1)     (14,2)
                                       (7,3,2)  (6,5,3)    (15,1)
                                       (7,4,1)  (8,4,2)    (7,5,4)
                                       (8,3,1)  (8,5,1)    (7,6,3)
                                       (9,2,1)  (9,3,2)    (9,4,3)
                                                (9,4,1)    (9,5,2)
                                                (10,3,1)   (9,6,1)
                                                (11,2,1)   (10,4,2)
                                                (8,3,2,1)  (10,5,1)
                                                           (11,3,2)
                                                           (11,4,1)
                                                           (12,3,1)
                                                           (13,2,1)
                                                           (6,5,4,1)
                                                           (7,4,3,2)
                                                           (9,4,2,1)
                                                           (10,3,2,1)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,!Or@@Table[SameQ[Total[#[[s]]],n/2],{s,Subsets[Range[Length[#]]]}]]&]],{n,2,20,2}]

Extensions

a(33)-a(48) from Giovanni Resta, Oct 30 2018