cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321144 Irregular triangle where T(n,k) is the number of divisors of n whose prime indices sum to k.

This page as a plain text file.
%I A321144 #7 Oct 29 2018 09:56:00
%S A321144 1,1,1,1,0,1,1,1,1,1,0,0,1,1,1,1,1,1,0,0,0,1,1,1,1,1,1,0,1,0,1,1,1,0,
%T A321144 1,1,1,0,0,0,0,1,1,1,2,1,1,1,0,0,0,0,0,1,1,1,0,0,1,1,1,0,1,1,0,1,1,1,
%U A321144 1,1,1,1,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0
%N A321144 Irregular triangle where T(n,k) is the number of divisors of n whose prime indices sum to k.
%C A321144 The rows are all palindromes.
%C A321144 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%e A321144 Triangle begins:
%e A321144   1
%e A321144   1  1
%e A321144   1  0  1
%e A321144   1  1  1
%e A321144   1  0  0  1
%e A321144   1  1  1  1
%e A321144   1  0  0  0  1
%e A321144   1  1  1  1
%e A321144   1  0  1  0  1
%e A321144   1  1  0  1  1
%e A321144   1  0  0  0  0  1
%e A321144   1  1  2  1  1
%e A321144   1  0  0  0  0  0  1
%e A321144   1  1  0  0  1  1
%e A321144   1  0  1  1  0  1
%e A321144   1  1  1  1  1
%e A321144   1  0  0  0  0  0  0  1
%e A321144   1  1  1  1  1  1
%e A321144   1  0  0  0  0  0  0  0  1
%e A321144   1  1  1  1  1  1
%e A321144   1  0  1  0  1  0  1
%e A321144   1  1  0  0  0  1  1
%e A321144   1  0  0  0  0  0  0  0  0  1
%e A321144   1  1  2  2  1  1
%e A321144   1  0  0  1  0  0  1
%e A321144   1  1  0  0  0  0  1  1
%e A321144   1  0  1  0  1  0  1
%e A321144   1  1  1  0  1  1  1
%e A321144   1  0  0  0  0  0  0  0  0  0  1
%e A321144   1  1  1  2  1  1  1
%t A321144 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]
%t A321144 Table[Count[Total/@primeMS/@Divisors[n],k],{n,20},{k,0,Total[primeMS[n]]}]
%Y A321144 Row lengths are A056239. Number of nonzero entries in row n is A299701(n).
%Y A321144 Cf. A000005, A112798, A276024, A301854, A301899.
%K A321144 nonn,tabf
%O A321144 1,45
%A A321144 _Gus Wiseman_, Oct 28 2018