cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A335937 Infinitary pseudoperfect numbers (A306983) that equal to the sum of a subset of their aliquot infinitary divisors in a single way.

Original entry on oeis.org

6, 60, 72, 78, 88, 90, 96, 102, 104, 114, 138, 150, 174, 186, 222, 246, 258, 282, 294, 318, 354, 366, 402, 426, 438, 474, 486, 498, 534, 582, 606, 618, 642, 654, 678, 726, 762, 786, 822, 834, 894, 906, 942, 978, 1002, 1014, 1038, 1074, 1086, 1146, 1158, 1182, 1194
Offset: 1

Views

Author

Amiram Eldar, Jun 30 2020

Keywords

Examples

			72 is a term since its set of infinitary aliquot divisors is {1, 2, 4, 8, 9, 18, 36}, and {1, 8, 9, 18, 36} is its only subset whose sum is equal to 72.
		

Crossrefs

The infinitary version of A064771.
Subsequence of A306983.
A007357 is a subsequence.
Similar sequences: A295829, A295830, A321145.

Programs

  • Mathematica
    idivs[x_] := If[x == 1, 1, Sort @ Flatten @ Outer[Times, Sequence @@ (FactorInteger[x] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]]; infpspQ[n_] := Module[{d = Most @ idivs[n], x}, Plus @@ d >= n && SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n] == 1]; Select[Range[2, 1200], infpspQ]
Showing 1-1 of 1 results.