A321146 Exponential weird numbers: numbers that are exponential abundant (A129575) but not exponential pseudoperfect (A318100).
4900, 14700, 53900, 63700, 83300, 93100, 112700, 142100, 151900, 161700, 181300, 191100, 200900, 210700, 230300, 249900, 259700, 279300, 289100, 298900, 328300, 338100, 347900, 357700, 387100, 406700, 426300, 436100, 455700, 475300, 494900, 504700, 524300
Offset: 1
Keywords
Examples
4900 is in the sequence since its proper exponential divisors, {70, 140, 350, 490, 700, 980, 2450} sum to 5180 > 4900, yet no subset of its divisors sums to 4900.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Robert Israel)
- Eric Weisstein's World of Mathematics, e-Divisor.
- Eric Weisstein's World of Mathematics, e-Perfect Number.
Programs
-
Maple
filter:= proc(n) local L,m,P,i,j,T,S,t,v; L:= ifactors(n)[2]; m:= nops(L); P:= map(t -> numtheory:-divisors(t[2]),L); if mul(add(L[i][1]^j, j=P[i]),i=1..m) <= 2*n then return false fi; T:= combinat:-cartprod(P); S:= {0}: while not T[finished] do t:= T:-nextvalue(); v:= mul(L[i][1]^t[i],i=1..m); if v = n then next fi; if member(n-v,S) then return false fi; S:= S union select(`<=`,map(`+`,S,v),n); od; true end proc: select(filter, [$1..10^6]); # Robert Israel, Feb 19 2019
-
Mathematica
dQ[n_, m_] := (n>0&&m>0 &&Divisible[n, m]); expDivQ[n_, d_] := Module[ {ft=FactorInteger[n]}, And@@MapThread[dQ, {ft[[;; , 2]], IntegerExponent[ d, ft[[;; , 1]]]} ]]; eDivs[n_] := Module[ {d=Rest[Divisors[n]]}, Select[ d, expDivQ[n, #]&] ]; esigma[1]=1; esigma[n_] := Total@eDivs[n]; eAbundantQ[n_] := esigma[n] > 2 n; a = {}; n = 0; While[Length[a] < 30, n++; If[!eAbundantQ[n], Continue[]]; d = Most[eDivs[n]]; c = SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; If[c < 1, AppendTo[a, n]]]; a