cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321146 Exponential weird numbers: numbers that are exponential abundant (A129575) but not exponential pseudoperfect (A318100).

Original entry on oeis.org

4900, 14700, 53900, 63700, 83300, 93100, 112700, 142100, 151900, 161700, 181300, 191100, 200900, 210700, 230300, 249900, 259700, 279300, 289100, 298900, 328300, 338100, 347900, 357700, 387100, 406700, 426300, 436100, 455700, 475300, 494900, 504700, 524300
Offset: 1

Views

Author

Amiram Eldar, Oct 28 2018

Keywords

Examples

			4900 is in the sequence since its proper exponential divisors, {70, 140, 350, 490, 700, 980, 2450} sum to 5180 > 4900, yet no subset of its divisors sums to 4900.
		

Crossrefs

The exponential version of A006037.

Programs

  • Maple
    filter:= proc(n)
      local L,m,P,i,j,T,S,t,v;
      L:= ifactors(n)[2];
      m:= nops(L);
      P:= map(t -> numtheory:-divisors(t[2]),L);
      if mul(add(L[i][1]^j, j=P[i]),i=1..m) <= 2*n then return false fi;
      T:= combinat:-cartprod(P);
      S:= {0}:
      while not T[finished] do
        t:= T:-nextvalue();
        v:= mul(L[i][1]^t[i],i=1..m);
        if v = n then next fi;
        if member(n-v,S) then return false fi;
        S:= S union select(`<=`,map(`+`,S,v),n);
      od;
      true
    end proc:
    select(filter, [$1..10^6]); # Robert Israel, Feb 19 2019
  • Mathematica
    dQ[n_, m_] := (n>0&&m>0 &&Divisible[n, m]); expDivQ[n_, d_] := Module[ {ft=FactorInteger[n]}, And@@MapThread[dQ, {ft[[;; , 2]], IntegerExponent[ d, ft[[;; , 1]]]} ]]; eDivs[n_] := Module[ {d=Rest[Divisors[n]]}, Select[ d, expDivQ[n, #]&] ]; esigma[1]=1; esigma[n_] := Total@eDivs[n]; eAbundantQ[n_] := esigma[n] > 2 n; a = {}; n = 0; While[Length[a] < 30, n++; If[!eAbundantQ[n], Continue[]]; d = Most[eDivs[n]]; c = SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; If[c < 1, AppendTo[a, n]]]; a