A321152 n such that all n - p are practical numbers where p is a practical number in range n/2 <= p < n.
2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 24, 36, 48, 60, 72, 84, 96, 120
Offset: 1
Examples
a(13)=24, because the practical numbers p in the range 12 <= p < 24 are {12, 16, 18, 20}. Also the complementary set {12, 8, 6, 4} has all its members practical numbers. This is the 13th occurrence of such a number.
Links
- Mehdi Hage-Hassan, An elementary introduction to Quantum mechanic, hal-00879586 2013 pp 58.
Programs
-
Mathematica
PracticalQ[n_] := Module[{f, p, e, prod=1, ok=True}, If[n<1||(n>1&&OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p, e}=Transpose[f]; Do[If[p[[i]]>1+DivisorSigma[1, prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]]; plst[n_] := Select[Range[Ceiling[n/2], n-1], PracticalQ]; lst={}; Do[If[plst[n]!={}&&AllTrue[n-plst[n], PracticalQ], AppendTo[lst, n]], {n, 1, 10000}]; lst
Comments