This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321155 #9 Oct 29 2018 09:56:08 %S A321155 1,2,1,3,2,1,6,6,4,1,10,14,11,4,1,22,38,38,20,6,1,42,94,111,72,28,6,1, %T A321155 94,250,348,278,138,42,8,1,203,648,1044,992,596,226,56,8,1,470,1728, %U A321155 3192,3538,2536,1192,370,76,10,1 %N A321155 Regular triangle where T(n,k) is the number of non-isomorphic connected multiset partitions of weight n with density -1 <= k < n-2. %C A321155 The density of a multiset partition of weight n with e parts and v vertices is n - e - v. The weight of a multiset partition is the sum of sizes of its parts. %e A321155 Triangle begins: %e A321155 1 %e A321155 2 1 %e A321155 3 2 1 %e A321155 6 6 4 1 %e A321155 10 14 11 4 1 %e A321155 22 38 38 20 6 1 %e A321155 42 94 111 72 28 6 1 %e A321155 94 250 348 278 138 42 8 1 %e A321155 203 648 1044 992 596 226 56 8 1 %e A321155 470 1728 3192 3538 2536 1192 370 76 10 1 %e A321155 Non-isomorphic representatives of the connected multiset partitions counted in row 5: %e A321155 {1,2,3,4,5} {1,2,3,4,4} {1,2,2,3,3} {1,1,2,2,2} {1,1,1,1,1} %e A321155 {1,4},{2,3,4} {1,2},{2,3,3} {1,2,3,3,3} {1,2,2,2,2} %e A321155 {4},{1,2,3,4} {1,3},{2,3,3} {1,1},{1,2,2} {1},{1,1,1,1} %e A321155 {2},{1,3},{2,3} {2},{1,2,3,3} {1},{1,2,2,2} {1,1},{1,1,1} %e A321155 {2},{3},{1,2,3} {2,3},{1,2,3} {1,2},{1,2,2} %e A321155 {3},{1,3},{2,3} {3},{1,2,3,3} {1,2},{2,2,2} %e A321155 {3},{3},{1,2,3} {3,3},{1,2,3} {2},{1,1,2,2} %e A321155 {1},{2},{2},{1,2} {1},{1},{1,2,2} {2},{1,2,2,2} %e A321155 {2},{2},{2},{1,2} {1},{1,2},{2,2} {2,2},{1,2,2} %e A321155 {1},{1},{1},{1},{1} {1},{2},{1,2,2} {1},{1},{1,1,1} %e A321155 {2},{1,2},{1,2} {1},{1,1},{1,1} %e A321155 {2},{1,2},{2,2} %e A321155 {2},{2},{1,2,2} %e A321155 {1},{1},{1},{1,1} %Y A321155 First column is A125702. Row sums are A007718. %Y A321155 Cf. A007716, A030019, A052888, A056156, A134954, A147878, A317631, A319557, A320921. %K A321155 nonn,tabl %O A321155 1,2 %A A321155 _Gus Wiseman_, Oct 29 2018