This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321176 #14 Aug 01 2019 00:29:22 %S A321176 1,0,1,1,2,3,5,7,10,15,21,28 %N A321176 Number of integer partitions of n that are the vertex-degrees of some set system with no singletons. %C A321176 A set system is a finite set of finite nonempty sets. %e A321176 The a(2) = 1 through a(9) = 15 partitions: %e A321176 (11) (111) (211) (221) (222) (322) (2222) (333) %e A321176 (1111) (2111) (2211) (2221) (3221) (3222) %e A321176 (11111) (3111) (3211) (3311) (3321) %e A321176 (21111) (22111) (22211) (4221) %e A321176 (111111) (31111) (32111) (22221) %e A321176 (211111) (41111) (32211) %e A321176 (1111111) (221111) (33111) %e A321176 (311111) (42111) %e A321176 (2111111) (222111) %e A321176 (11111111) (321111) %e A321176 (411111) %e A321176 (2211111) %e A321176 (3111111) %e A321176 (21111111) %e A321176 (111111111) %e A321176 The a(8) = 10 integer partitions together with a realizing set system for each (the parts of the partition count the appearances of each vertex in the set system): %e A321176 (41111): {{1,2},{1,3},{1,4},{1,5}} %e A321176 (3311): {{1,2},{1,2,3},{1,2,4}} %e A321176 (3221): {{1,2},{1,3},{1,2,3,4}} %e A321176 (32111): {{1,2},{1,3},{1,2,4,5}} %e A321176 (311111): {{1,2},{1,3},{1,4,5,6}} %e A321176 (2222): {{1,2},{3,4},{1,2,3,4}} %e A321176 (22211): {{1,2,3},{1,2,3,4,5}} %e A321176 (221111): {{1,2},{1,2,3,4,5,6}} %e A321176 (2111111): {{1,2},{1,3,4,5,6,7}} %e A321176 (11111111): {{1,2,3,4,5,6,7,8}} %t A321176 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A321176 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A321176 hyp[m_]:=Select[mps[m],And[And@@UnsameQ@@@#,UnsameQ@@#,Min@@Length/@#>1]&]; %t A321176 strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; %t A321176 Table[Length[Select[strnorm[n],hyp[#]!={}&]],{n,8}] %Y A321176 Cf. A000070, A000569, A147878, A209816, A283877, A306005, A318361, A320922, A320923, A320924, A321177. %K A321176 nonn,more %O A321176 0,5 %A A321176 _Gus Wiseman_, Oct 29 2018