This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321179 #28 Oct 30 2018 03:19:44 %S A321179 1,2,2,14,44,174,988,4314,20780,126320,692328,3836166,23160914, %T A321179 135752866,803203484,4902966108,29745996950,181712320506, %U A321179 1124481497694,6965802854354,43360326335154,271658784580760,1706393926177980,10757142052998054,68081390206251952,432001821971576352 %N A321179 a(n) = [x^(n^2)] Product_{k=1..n} theta_3(q^k), where theta_3() is the Jacobi theta function. %C A321179 Also the number of integer solutions (a_1, a_2, ... , a_n) to the equation a_1^2 + 2*a_2^2 + ... + n*a_n^2 = n^2. %H A321179 Vaclav Kotesovec, <a href="/A321179/b321179.txt">Table of n, a(n) for n = 0..400</a> (first 91 terms from Seiichi Manyama) %F A321179 a(n) ~ c * d^n / n^(7/4), where d = 6.8137220913147... and c = 0.178176349247... - _Vaclav Kotesovec_, Oct 30 2018 %e A321179 Solutions (a_1, a_2, a_3) to the equation a_1^2 + 2*a_2^2 + 3*a_3^2 = 9. %e A321179 ------------------------------------------------------------------------ %e A321179 ( 1, 2, 0), ( 1, -2, 0), %e A321179 (-1, 2, 0), (-1, -2, 0), %e A321179 ( 2, 1, 1), ( 2, 1, -1), %e A321179 ( 2, -1, 1), ( 2, -1, -1), %e A321179 (-2, 1, 1), (-2, 1, -1), %e A321179 (-2, -1, 1), (-2, -1, -1), %e A321179 ( 3, 0, 0), (-3, 0, 0). %t A321179 nmax = 20; Table[SeriesCoefficient[Product[EllipticTheta[3, 0, x^k], {k, 1, n}], {x, 0, n^2}], {n, 0, nmax}] (* _Vaclav Kotesovec_, Oct 29 2018 *) %o A321179 (PARI) {a(n) = polcoeff(prod(i=1, n, 1+2*sum(j=1, sqrtint(n^2\i), x^(i*j^2)+x*O(x^(n^2)))), n^2)} %Y A321179 Cf. A000122, A000290, A320067, A320931, A321139. %K A321179 nonn %O A321179 0,2 %A A321179 _Seiichi Manyama_, Oct 29 2018