This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321184 #7 Aug 01 2019 00:29:31 %S A321184 1,0,1,1,3,2,7,6,15,15,30 %N A321184 Number of integer partitions of n that are the vertex-degrees of some multiset of nonempty sets, none of which is a proper subset of any other, with no singletons. %e A321184 The a(2) = 1 through a(8) = 15 partitions: %e A321184 (11) (111) (22) (2111) (33) (2221) (44) %e A321184 (211) (11111) (222) (3211) (332) %e A321184 (1111) (321) (22111) (422) %e A321184 (2211) (31111) (431) %e A321184 (3111) (211111) (2222) %e A321184 (21111) (1111111) (3221) %e A321184 (111111) (3311) %e A321184 (4211) %e A321184 (22211) %e A321184 (32111) %e A321184 (41111) %e A321184 (221111) %e A321184 (311111) %e A321184 (2111111) %e A321184 (11111111) %e A321184 The a(6) = 7 integer partitions together with a realizing multi-antichain of each (the parts of the partition count the appearances of each vertex in the multi-antichain): %e A321184 (33): {{1,2},{1,2},{1,2}} %e A321184 (321): {{1,2},{1,2},{1,3}} %e A321184 (3111): {{1,2},{1,3},{1,4}} %e A321184 (222): {{1,2,3},{1,2,3}} %e A321184 (2211): {{1,2,3},{1,2,4}} %e A321184 (21111): {{1,2},{1,3,4,5}} %e A321184 (111111): {{1,2,3,4,5,6}} %t A321184 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A321184 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A321184 multanti[m_]:=Select[mps[m],And[And@@UnsameQ@@@#,Min@@Length/@#>1,stableQ[#]]&]; %t A321184 strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; %t A321184 Table[Length[Select[strnorm[n],multanti[#]!={}&]],{n,8}] %Y A321184 Cf. A000070, A000569, A006126, A096827, A147878, A209816, A283877, A318360, A319719, A319721, A320799, A320921, A321176. %K A321184 nonn,more %O A321184 0,5 %A A321184 _Gus Wiseman_, Oct 29 2018