cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321184 Number of integer partitions of n that are the vertex-degrees of some multiset of nonempty sets, none of which is a proper subset of any other, with no singletons.

This page as a plain text file.
%I A321184 #7 Aug 01 2019 00:29:31
%S A321184 1,0,1,1,3,2,7,6,15,15,30
%N A321184 Number of integer partitions of n that are the vertex-degrees of some multiset of nonempty sets, none of which is a proper subset of any other, with no singletons.
%e A321184 The a(2) = 1 through a(8) = 15 partitions:
%e A321184   (11)  (111)  (22)    (2111)   (33)      (2221)     (44)
%e A321184                (211)   (11111)  (222)     (3211)     (332)
%e A321184                (1111)           (321)     (22111)    (422)
%e A321184                                 (2211)    (31111)    (431)
%e A321184                                 (3111)    (211111)   (2222)
%e A321184                                 (21111)   (1111111)  (3221)
%e A321184                                 (111111)             (3311)
%e A321184                                                      (4211)
%e A321184                                                      (22211)
%e A321184                                                      (32111)
%e A321184                                                      (41111)
%e A321184                                                      (221111)
%e A321184                                                      (311111)
%e A321184                                                      (2111111)
%e A321184                                                      (11111111)
%e A321184 The a(6) = 7 integer partitions together with a realizing multi-antichain of each (the parts of the partition count the appearances of each vertex in the multi-antichain):
%e A321184       (33): {{1,2},{1,2},{1,2}}
%e A321184      (321): {{1,2},{1,2},{1,3}}
%e A321184     (3111): {{1,2},{1,3},{1,4}}
%e A321184      (222): {{1,2,3},{1,2,3}}
%e A321184     (2211): {{1,2,3},{1,2,4}}
%e A321184    (21111): {{1,2},{1,3,4,5}}
%e A321184   (111111): {{1,2,3,4,5,6}}
%t A321184 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A321184 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t A321184 multanti[m_]:=Select[mps[m],And[And@@UnsameQ@@@#,Min@@Length/@#>1,stableQ[#]]&];
%t A321184 strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
%t A321184 Table[Length[Select[strnorm[n],multanti[#]!={}&]],{n,8}]
%Y A321184 Cf. A000070, A000569, A006126, A096827, A147878, A209816, A283877, A318360, A319719, A319721, A320799, A320921, A321176.
%K A321184 nonn,more
%O A321184 0,5
%A A321184 _Gus Wiseman_, Oct 29 2018