This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321185 #15 Jun 09 2021 02:32:33 %S A321185 1,0,1,1,2,2,5,5,9,11,17,20 %N A321185 Number of integer partitions of n that are the vertex-degrees of some strict antichain of sets with no singletons. %C A321185 A strict antichain is a finite set of finite nonempty sets, none of which is a subset of any other. %e A321185 The a(2) = 1 through a(9) = 11 partitions: %e A321185 (11) (111) (211) (2111) (222) (2221) (2222) (3222) %e A321185 (1111) (11111) (2211) (22111) (3221) (22221) %e A321185 (3111) (31111) (22211) (32211) %e A321185 (21111) (211111) (32111) (33111) %e A321185 (111111) (1111111) (41111) (222111) %e A321185 (221111) (321111) %e A321185 (311111) (411111) %e A321185 (2111111) (2211111) %e A321185 (11111111) (3111111) %e A321185 (21111111) %e A321185 (111111111) %e A321185 The a(8) = 9 integer partitions together with a realizing strict antichain for each (the parts of the partition count the appearances of each vertex in the antichain): %e A321185 (41111): {{1,2},{1,3},{1,4},{1,5}} %e A321185 (3221): {{1,2},{1,3},{1,4},{2,3}} %e A321185 (32111): {{1,3},{1,2,4},{1,2,5}} %e A321185 (311111): {{1,2},{1,3},{1,4,5,6}} %e A321185 (2222): {{1,2},{1,3,4},{2,3,4}} %e A321185 (22211): {{1,2,3,4},{1,2,3,5}} %e A321185 (221111): {{1,2,3},{1,2,4,5,6}} %e A321185 (2111111): {{1,2},{1,3,4,5,6,7}} %e A321185 (11111111): {{1,2,3,4,5,6,7,8}} %t A321185 submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{___,x_,W___}}/;submultisetQ[{Z},{W}]]]; %t A321185 stableQ[u_]:=Apply[And,Outer[#1==#2||!submultisetQ[#1,#2]&&!submultisetQ[#2,#1]&,u,u,1],{0,1}]; %t A321185 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A321185 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A321185 anti[m_]:=Select[mps[m],And[And@@UnsameQ@@@#,UnsameQ@@#,Min@@Length/@#>1,stableQ[#]]&]; %t A321185 strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; %t A321185 Table[Length[Select[strnorm[n],anti[#]!={}&]],{n,8}] %Y A321185 Cf. A000070, A000569, A006126, A096827, A209816, A283877, A293606, A293993, A306005, A318361, A319721, A321176, A321184. %K A321185 nonn,more %O A321185 0,5 %A A321185 _Gus Wiseman_, Oct 29 2018