This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321186 #14 Oct 29 2018 11:38:43 %S A321186 1,1,2,6,25,123,683,4083,25839,171324,1178755,8362768,60867478, %T A321186 452760486,3431366195,26430813268,206504120774,1633813641572, %U A321186 13071700375914,105635826348216,861408409243195,7081998941608535,58658594339423251,489168002223876023,4104791591982736028 %N A321186 a(n) = [x^(n*(n+1)*(2*n+1)/6)] Product_{k=1..n} Sum_{m>=0} x^(k^2*m). %C A321186 Also the number of nonnegative integer solutions (a_1, a_2, ... , a_n) to the equation 1^2*a_1 + 2^2*a_2 + ... + n^2*a_n = n*(n+1)*(2*n+1)/6. %H A321186 Seiichi Manyama, <a href="/A321186/b321186.txt">Table of n, a(n) for n = 0..36</a> %e A321186 1^2* 0 + 2^2*3 + 3^2*2 + 4^2*0 = 30. %e A321186 1^2* 1 + 2^2*1 + 3^2*1 + 4^2*1 = 30. %e A321186 1^2* 1 + 2^2*5 + 3^2*1 + 4^2*0 = 30. %e A321186 1^2* 2 + 2^2*3 + 3^2*0 + 4^2*1 = 30. %e A321186 1^2* 2 + 2^2*7 + 3^2*0 + 4^2*0 = 30. %e A321186 1^2* 3 + 2^2*0 + 3^2*3 + 4^2*0 = 30. %e A321186 1^2* 4 + 2^2*2 + 3^2*2 + 4^2*0 = 30. %e A321186 1^2* 5 + 2^2*0 + 3^2*1 + 4^2*1 = 30. %e A321186 1^2* 5 + 2^2*4 + 3^2*1 + 4^2*0 = 30. %e A321186 1^2* 6 + 2^2*2 + 3^2*0 + 4^2*1 = 30. %e A321186 1^2* 6 + 2^2*6 + 3^2*0 + 4^2*0 = 30. %e A321186 1^2* 8 + 2^2*1 + 3^2*2 + 4^2*0 = 30. %e A321186 1^2* 9 + 2^2*3 + 3^2*1 + 4^2*0 = 30. %e A321186 1^2*10 + 2^2*1 + 3^2*0 + 4^2*1 = 30. %e A321186 1^2*10 + 2^2*5 + 3^2*0 + 4^2*0 = 30. %e A321186 1^2*12 + 2^2*0 + 3^2*2 + 4^2*0 = 30. %e A321186 1^2*13 + 2^2*2 + 3^2*1 + 4^2*0 = 30. %e A321186 1^2*14 + 2^2*0 + 3^2*0 + 4^2*1 = 30. %e A321186 1^2*14 + 2^2*4 + 3^2*0 + 4^2*0 = 30. %e A321186 1^2*17 + 2^2*1 + 3^2*1 + 4^2*0 = 30. %e A321186 1^2*18 + 2^2*3 + 3^2*0 + 4^2*0 = 30. %e A321186 1^2*21 + 2^2*0 + 3^2*1 + 4^2*0 = 30. %e A321186 1^2*22 + 2^2*2 + 3^2*0 + 4^2*0 = 30. %e A321186 1^2*26 + 2^2*1 + 3^2*0 + 4^2*0 = 30. %e A321186 1^2*30 + 2^2*0 + 3^2*0 + 4^2*0 = 30. %e A321186 So a(4) = 25. %Y A321186 Cf. A037444, A321183. %K A321186 nonn %O A321186 0,3 %A A321186 _Seiichi Manyama_, Oct 29 2018