This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321187 #25 Feb 02 2019 10:30:45 %S A321187 1,7,1,71,23,1,913,456,48,1,13777,9060,1560,82,1,233119,185805,44262, %T A321187 3950,125,1,4298911,3951927,1188747,151585,8355,177,1,84769393, %U A321187 87024056,31242008,5172370,416730,15666,238,1,1763748273,1977448272,815985408,165150744,17626140,985068,26936,308,1 %N A321187 Triangle read by rows, T(n, k) is the determinant of the matrix [s(n,k), s(n,k+1); s(n+1,k), s(n+1,k+1)] where s is the triangle A110440 of little Schroeder numbers. %H A321187 Fangfang Cai, Qing-Hu Hou, Yidong Sun, Arthur L.B. Yang, <a href="https://arxiv.org/abs/1808.05736">Combinatorial identities related to 2×2 submatrices of recursive matrices</a>, arXiv:1808.05736 [math.CO], 2018. See Table 1.3 p. 3. %e A321187 Triangle begins: %e A321187 1; %e A321187 7, 1; %e A321187 71, 23, 1; %e A321187 913, 456, 48, 1; %e A321187 13777, 9060, 1560, 82, 1; %e A321187 233119, 185805, 44262, 3950, 125, 1; %e A321187 ... %t A321187 s[n_, k_] := Sum[i (-1)^(k - i + 1) Binomial[k + 1, i] Sum[(-1)^j 2^(n + 1 - j) (2n + i - j + 1)!/((n + i - j + 1)! j! (n - j + 1)!), {j, 0, n+1}], {i, 0, k + 1}]; %t A321187 T[n_, k_] := Det[{{s[n, k], s[n, k+1]}, {s[n+1, k], s[n+1, k+1]}}]; %t A321187 Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Feb 02 2019, translated from PARI *) %o A321187 (PARI) s(n,k) = sum(i = 0, k+1, (i*(-1)^(k - i + 1)*binomial(k + 1, i)*sum(j=0, n+1, (-1)^j*2^(n + 1 - j)*(2*n + i - j + 1)!/((n + i - j + 1)!*j!*(n - j + 1)!)))); \\ A110440 %o A321187 T(n,k) = matdet([s(n,k), s(n,k+1); s(n+1,k), s(n+1,k+1)]); %Y A321187 Cf. A110440. %K A321187 nonn,tabl %O A321187 0,2 %A A321187 _Michel Marcus_, Oct 31 2018