A321199
Row sums of Riordan triangle A321198.
Original entry on oeis.org
1, 1, 2, 2, 4, 2, 7, -5, 16, -40, 74, -196, 431, -999, 2433, -5575, 13600, -32264, 77794, -188630, 456078, -1113702, 2716432, -6656382, 16351231, -40236773, 99308252, -245471638, 608083547, -1508944093, 3750434282, -9336906118, 23277132752, -58112501728, 145266946742, -363574425058
Offset: 0
A321200
Alternating row sums of Riordan triangle A321198.
Original entry on oeis.org
1, -1, 2, -4, 8, -18, 39, -89, 204, -472, 1110, -2616, 6231, -14909, 35861, -86705, 210364, -512480, 1252350, -3069638, 7544818, -18589202, 45907708, -113608590, 281698359, -699748003, 1741102844, -4338995332, 10828981851, -27063384783, 67722954114, -169674183372, 425590855116, -1068654838488
Offset: 0
A321196
Riordan triangle T = (1/(1 + x^2 - x^3), x/(1 + x^2 - x^3)).
Original entry on oeis.org
1, 0, 1, -1, 0, 1, 1, -2, 0, 1, 1, 2, -3, 0, 1, -2, 3, 3, -4, 0, 1, 0, -6, 6, 4, -5, 0, 1, 3, -1, -12, 10, 5, -6, 0, 1, -2, 12, -4, -20, 15, 6, -7, 0, 1, -3, -7, 30, -10, -30, 21, 7, -8, 0, 1, 5, -16, -15, 60, -20, -42, 28, 8, -9, 0, 1
Offset: 0
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
---------------------------------------------
0: 1
1: 0 1
2: -1 0 1
3: 1 -2 0 1
4: 1 2 -3 0 1
5: -2 3 3 -4 0 1
6: 0 -6 6 4 -5 0 1
7: 3 -1 -12 10 5 -6 0 1
8: -2 12 -4 -20 15 6 -7 0 1
9: -3 -7 30 -10 -30 21 7 -8 0 1
10: 5 -16 -15 60 -20 -42 28 8 -9 0 1
...
Cayley-Hamilton formula for the matrix TS(x) =[[x,-1,1], [1,0,0], [0,1,0]] with Det(TS(x)) = +1, sigma(3, 2) = +1, and Tr(TS(x)) = x. For n = 3: TS(x)^3 = R(1, x)*TS(x)^2 + (-R(0, x) + R(-1, x))*TS(x) + R(0, x)*1_3 = x*TS(x)^2 - TS(x) + 1_3. Compare this for x = -1 with r^3 = R(3)*r^2 + (-R(2) + R(1))*r + R(2)*1 = r^2 - r + 1, where r = 1/t = A192918, with the tribonacci constant t = A058265, and R(n) = A057597(n) = R(n-2, -1).
Recurrence: T(5, 2) = T(4, 1) - T(3, 2) + T(2, 2) = 1 -(-1) + 1 = 3.
Boas-Buck type recurrence with B = {0, -2, 3, ...}:
T(5, 2) = ((2+1)/(5-2))*(3*1 + (-2)*0 + 0*(-3)) = 1*3 = 3.
Z- and A-recurrence with A(n) = {1, 0, -1, 1, -1, ...} and Z(n) = A(n+1):
T(4, 0) = 0*T(3, 0) - 1*T(3, 1) + 1*T(3, 2) - 1*T(3, 3) = 0 + 2 + 0 - 1 = 1.
T(5, 2) = 1*T(4, 1) + 0*T(4, 2) - 1*T(4, 3) + 1*T(4, 4) = 2 + 0 + 0 + 1 = 3.
-
T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n - 1, k - 1] - T[n - 2, k] + T[n - 3, k]; T[0, 0] = 1; T[, ] = 0;
Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jul 06 2019 *)
-
# uses[riordan_array from A256893]
riordan_array(1/(1 + x^2 - x^3), x/(1 + x^2 - x^3), 11) # Peter Luschny, Nov 13 2018
Showing 1-3 of 3 results.
Comments