This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321202 #17 Mar 13 2025 11:04:08 %S A321202 1,1,2,2,5,3,7,7,9,9,15,11,18,18,21,21,30,24,34,34,38,38,50,42,55,55, %T A321202 60,60,75,65,81,81,87,87,105,93,112,112,119,119,140,126,148,148,156, %U A321202 156,180,164,189,189,198,198,225,207,235,235,245,245,275,255,286,286,297 %N A321202 Row sums of the irregular triangle A321201. %C A321202 Total number of parts in the partitions of n into parts of size 2 and 3. - _Andrew Howroyd_, Nov 10 2018 %H A321202 Andrew Howroyd, <a href="/A321202/b321202.txt">Table of n, a(n) for n = 2..1000</a> %H A321202 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (-1,1,3,2,-2,-3,-1,1,1). %F A321202 a(n) = Sum_{k=1..2*A008615(n+2)} A321201(n, k), n >= 2. %F A321202 From _Andrew Howroyd_, Nov 10 2018: (Start) %F A321202 G.f.: x^2*(1 + 2*x + 2*x^2)/((1 + x + x^2)^2*(1 + x)^2*(1 - x)^3). %F A321202 a(n) = Sum_{k=0..floor(n/6)} 2*k + (n-6*k)/2 for even n. %F A321202 a(n) = Sum_{k=0..floor((n-3)/6)} 2*k + 1 + (n-3-6*k)/2 for odd n. %F A321202 (End) %t A321202 row[n_] := Reap[Do[If[2 e2 + 3 e3 == n, Sow[{e2, e3}]], {e2, 0, n/2}, {e3, 0, n/3}]][[2, 1]]; %t A321202 a[n_] := row[n] // Flatten // Total; %t A321202 Table[a[n], {n, 2, 100}] (* _Jean-François Alcover_, Nov 23 2018 *) %o A321202 (PARI) Vec((1 + 2*x + 2*x^2)/((1 + x + x^2)^2*(1 + x)^2*(1 - x)^3) + O(x^60)) \\ _Andrew Howroyd_, Nov 10 2018 %Y A321202 Cf. A008615, A321201. %K A321202 nonn %O A321202 2,3 %A A321202 _Wolfdieter Lang_, Nov 05 2018 %E A321202 Terms a(27) and beyond from _Andrew Howroyd_, Nov 10 2018