This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321203 #13 Dec 23 2018 23:48:51 %S A321203 2,3,6,20,15,20,105,168,70,84,504,1260,252,1320,2310,495,7920,924, %T A321203 12870,10296,10010,45045,3432,3003,100100,45045,120120,240240,12870, %U A321203 74256,680680,194480,18564,1113840,1225224,48620,1058148,4232592,831402,542640,8817900,6046560,184756 %N A321203 Irregular triangle T giving the coefficients of x^n = x^{2*e2 + 3*e3} of (1 + x^2 + x^3)^n, with the pair of nonnegative numbers [e2, e3] listed in row n of A321201, for n >= 2. %C A321203 The row length is r(n), with r(n) = A008615(n+2) for n >= 2: [1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 4, 3, 4, ...]. %C A321203 The row sums give A176806(n). %C A321203 For n = 0 with the trivial [e2, e3] = [0, 0] solution the multinomial is 1 with the row sum A176806(0) = 1. For n = 1 there is no solution (with row sum set to A176806(1) = 0). %C A321203 This multinomial array for pairs [e2, e3] with 2*2e2 + 3*e3 = n, with nonnegative numbers e2 and e3, is obtained from the multinomial array n!/(e1!*e2!*e3!) with n = e1 + e2 + e3, giving the coefficient x_1^{e1}* x_2^{e2}*x_3^{e3} of (x_1 + x_2 + x_3)^n. Here, in order to find the coefficients of (1 + x^2 + x^3)^n, one sets x_1 = 1, x_2 = x^2 and x_3 = x^3. Hence n = e1 + e2 + e3, and the power of x^n becomes n = 2*e2 + 3*e3. Therefore, e1 = n - (e2 + e3), and the array gives n!/((n-(e2+e3))!*e2!*e3!). %F A321203 T(n, m) is obtained from the pair(s) [e2, e3] given in row n of A321201 by n!/((n - (e2 +e3))!*e2!*e3!), for n >= 2 and m = 1, 2, ..., A008615(n+2). %e A321203 The triangle T(n, m), and the row sums begin: %e A321203 n\m 0 1 2 3 ... Row sums A176806(n) %e A321203 2: 2 2 %e A321203 3: 3 3 %e A321203 4: 6 6 %e A321203 5: 20 20 %e A321203 6: 15 20 35 %e A321203 7: 105 105 %e A321203 8: 168 70 238 %e A321203 9: 84 504 588 %e A321203 10: 1260 252 1512 %e A321203 11: 1320 2310 3630 %e A321203 12: 495 7920 924 9339 %e A321203 13: 12870 10296 23166 %e A321203 14: 10010 45045 3432 58487 %e A321203 15: 3003 100100 45045 148148 %e A321203 16: 120120 240240 12870 373230 %e A321203 17: 74256 680680 194480 949416 %e A321203 18: 18564 1113840 1225224 48620 2406248 %e A321203 19: 1058148 4232592 831402 6122142 %e A321203 20: 542640 8817900 6046560 184756 15591856 %e A321203 ... %e A321203 ------------------------------------------------------------------------------ %e A321203 n = 8: (1 + x^2 + x^3)^8 has coefficients 238 of x^n arising from the two [e2, e3] pairs [1, 2] and [4, 0], given in row n = 8 of A321201. The multinomial values are 8!/((8-3)!*1!*2!) = 168 and 8!/((8-4)!*4!*0!) = 70, summing to 238. %Y A321203 Cf. A008615, A130561, A176806, A321201, A319204. %K A321203 nonn,tabf %O A321203 2,1 %A A321203 _Wolfdieter Lang_, Nov 05 2018